
3.2 Linear-time temporal logic 185

Similarly, F and G are duals of each other, and X is dual with itself:

¬Gφ ≡ F¬φ ¬Fφ ≡ G¬φ ¬Xφ ≡ X¬φ.
Also U and R are duals of each other:

¬(φ U ψ) ≡ ¬φ R ¬ψ ¬(φ R ψ) ≡ ¬φ U ¬ψ.
We should give formal proofs of these equivalences. But they are easy, so we
leave them as an exercise to the reader. ‘Morally’ there ought to be a dual
for W, and you can invent one if you like. Work out what it might mean,
and then pick a symbol based on the first letter of the meaning. However, it
might not be very useful.

It’s also the case that F distributes over ∨ and G over ∧, i.e.,

F (φ ∨ ψ) ≡ Fφ ∨ Fψ

G (φ ∧ ψ) ≡ Gφ ∧ Gψ.

Compare this with the quantifier equivalences in Section 2.3.2. But F does
not distribute over ∧. What this means is that there is a model with a
path which distinguishes F (φ ∧ ψ) and Fφ ∧ Fψ, for some φ, ψ. Take the
path s0 → s1 → s0 → s1 → . . . from the system of Figure 3.3, for example;
it satisfies F p ∧ F r but it doesn’t satisfy F (p ∧ r).

Here are two more equivalences in LTL:

Fφ ≡ � U φ Gφ ≡ ⊥ R φ.

The first one exploits the fact that the clause for Until states two things:
the second formula φ must become true; and until then, the first formula �
must hold. So, if we put ‘no constraint’ for the first formula, it boils down
to asking that the second formula holds, which is what F asks. (The formula
� represent ‘no constraint.’ If you ask me to bring it about that � holds,
I need do nothing, it enforces no constraint. In the same sense, ⊥ is ‘every
constraint.’ If you ask me to bring it about that ⊥ holds, I’ll have to meet
every constraint there is, which is impossible.)

The second formula, that Gφ ≡ ⊥ R φ, can be obtained from the first by
putting a ¬ in front of each side, and applying the duality rules. Another
more intuitive way of seeing this is to recall the meaning of ‘release:’ ⊥
releases φ, but ⊥ will never be true, so φ doesn’t get released.

Another pair of equivalences relates the strong and weak versions of Until,
U and W. Strong until may be seen as weak until plus the constraint that
the eventuality must actually occur:

φ U ψ ≡ φ W ψ ∧ Fψ . (3.2)

186 3 Verification by model checking

To prove equivalence (3.2), suppose first that a path satisfies φ U ψ. Then,
from clause 11, we have i ≥ 1 such that πi � ψ and for all j = 1, . . . , i− 1
we have πj � φ. From clause 12, this proves φ W ψ, and from clause 10 it
proves Fψ. Thus for all paths π, if π � φ U ψ then π � φ W ψ ∧ Fψ. As an
exercise, the reader can prove it the other way around.

Writing W in terms of U is also possible: W is like U but also allows the
possibility of the eventuality never occurring:

φ W ψ ≡ φ U ψ ∨ Gφ. (3.3)

Inspection of clauses 12 and 13 reveals that R and W are rather similar. The
differences are that they swap the roles of their arguments φ and ψ; and the
clause for W has an i− 1 where R has i. Therefore, it is not surprising that
they are expressible in terms of each other, as follows:

φ W ψ ≡ ψ R (φ ∨ ψ) (3.4)

φ R ψ ≡ ψ W (φ ∧ ψ). (3.5)

3.2.5 Adequate sets of connectives for LTL

Recall that φ ≡ ψ holds iff any path in any transition system which sat-
isfies φ also satisfies ψ, and vice versa. As in propositional logic, there is
some redundancy among the connectives. For example, in Chapter 1 we saw
that the set {⊥,∧,¬} forms an adequate set of connectives, since the other
connectives ∨, →, �, etc., can be written in terms of those three.

Small adequate sets of connectives also exist in LTL. Here is a summary
of the situation.

� X is completely orthogonal to the other connectives. That is to say, its presence
doesn’t help in defining any of the other ones in terms of each other. Moreover,
X cannot be derived from any combination of the others.

� Each of the sets {U,X}, {R,X}, {W,X} is adequate. To see this, we note that
– R and W may be defined from U, by the duality φ R ψ ≡ ¬(¬φ U ¬ψ) and

equivalence (3.4) followed by the duality, respectively.
– U and W may be defined from R, by the duality φ U ψ ≡ ¬(¬φ R ¬ψ) and

equivalence (3.4), respectively.
– R and U may be defined from W, by equivalence (3.5) and the duality φ U
ψ ≡ ¬(¬φ R ¬ψ) followed by equivalence (3.5).

Sometimes it is useful to look at adequate sets of connectives which do not
rely on the availability of negation. That’s because it is often convenient to
assume formulas are written in negation-normal form, where all the negation
symbols are applied to propositional atoms (i.e., they are near the leaves

3.3 Model checking: systems, tools, properties 187

of the parse tree). In this case, these sets are adequate for the fragment
without X, and no strict subset is: {U,R}, {U,W}, {U,G}, {R,F}, {W,F}.
But {R,G} and {W,G} are not adequate. Note that one cannot define G
with {U,F}, and one cannot define F with {R,G} or {W,G}.

We finally state and prove a useful equivalence about U.

Theorem 3.10 The equivalence φ U ψ ≡ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ holds
for all LTL formulas φ and ψ.

PROOF: Take any path s0 → s1 → s2 → . . . in any model.

First, suppose s0 � φ U ψ holds. Let n be the smallest number such that
sn � ψ; such a number has to exist since s0 � φ U ψ; then, for each k < n,
sk � φ. We immediately have s0 � Fψ, so it remains to show s0 � ¬(¬ψ U
(¬φ ∧ ¬ψ)), which, if we expand, means:
(∗) for each i > 0, if si � ¬φ ∧ ¬ψ, then there is some j < i with sj � ψ.
Take any i > 0 with si � ¬φ ∧ ¬ψ; i > n, so we can take j def= n and have
sj � ψ.
Conversely, suppose s0 � ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ holds; we prove s0 � φ U
ψ. Since s0 � Fψ, we have a minimal n as before. We show that, for any
i < n, si � φ. Suppose si � ¬φ; since n is minimal, we know si � ¬ψ, so
by (∗) there is some j < i < n with sj � ψ, contradicting the minimality
of n. �

3.3 Model checking: systems, tools, properties

3.3.1 Example: mutual exclusion

Let us now look at a larger example of verification using LTL, having to do
with mutual exclusion. When concurrent processes share a resource (such as
a file on a disk or a database entry), it may be necessary to ensure that they
do not have access to it at the same time. Several processes simultaneously
editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and
arrange that only one process can be in its critical section at a time. The
critical section should include all the access to the shared resource (though it
should be as small as possible so that no unnecessary exclusion takes place).
The problem we are faced with is to find a protocol for determining which
process is allowed to enter its critical section at which time. Once we have
found one which we think works, we verify our solution by checking that it
has some expected properties, such as the following ones:

Safety: Only one process is in its critical section at any time.

188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n→ t→ c→ n→ . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm
are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

3.3 Model checking: systems, tools, properties 189

move to its trying state, but only one of them can ever make a transition at
a time (asynchronous interleaving). At each step, an (unspecified) scheduler
determines which process may run. So there is a transition arrow from s0 to
s1 and s5. From s1 (i.e., process 1 trying, process 2 non-critical) again two
things can happen: either process 1 moves again (we go to s2), or process 2
moves (we go to s3). Notice that not every process can move in every state.
For example, process 1 cannot move in state s7, since it cannot go into its
critical section until process 2 comes out of its critical section.

We would like to check the four properties by first describing them as
temporal logic formulas. Unfortunately, they are not all expressible as LTL
formulas. Let us look at them case-by-case.

Safety: This is expressible in LTL, as G¬(c1 ∧ c2). Clearly, G¬(c1 ∧ c2)
is satisfied in the initial state (indeed, in every state).

Liveness: This is also expressible: G (t1 → F c1). However, it is not sat-
isfied by the initial state, for we can find a path starting at the
initial state along which there is a state, namely s1, in which t1 is
true but from there along the path c1 is false. The path in question
is s0 → s1 → s3 → s7 → s1 → s3 → s7 . . . on which c1 is always false.

Non-blocking: Let’s just consider process 1. We would like to express the
property as: for every state satisfying n1, there is a successor satisfying
t1. Unfortunately, this existence quantifier on paths (‘there is a successor
satisfying. . . ’) cannot be expressed in LTL. It can be expressed in the
logic CTL, which we will turn to in the next section (for the impatient,
see page 215).

No strict sequencing: We might consider expressing this as saying: there
is a path with two distinct states satisfying c1 such that no state in
between them has that property. However, we cannot express ‘there
exists a path,’ so let us consider the complement formula instead. The
complement says that all paths having a c1 period which ends can-
not have a further c1 state until a c2 state occurs. We write this as:
G (c1 → c1 W (¬c1 ∧ ¬c1 W c2)). This says that anytime we get into a
c1 state, either that condition persists indefinitely, or it ends with a non-
c1 state and in that case there is no further c1 state unless and until we
obtain a c2 state.
This formula is false, as exemplified by the path s0 → s5 → s3 → s4 →
s5 → s3 → s4 Therefore the original condition expressing that strict
sequencing need not occur, is true.

Before further considering the mutual exclusion example, some comments
about expressing properties in LTL are appropriate. Notice that in the

190 3 Verification by model checking

no-strict-sequencing property, we overcame the problem of not being able to
express the existence of paths by instead expressing the complement prop-
erty, which of course talks about all paths. Then we can perform our check,
and simply reverse the answer; if the complement property is false, we de-
clare our property to be true, and vice versa.

Why was that tactic not available to us to express the non-blocking prop-
erty? The reason is that it says: every path to a n1 state may be continued
by a one-step path to a t1 state. The presence of both universal and exis-
tential quantifiers is the problem. In the no-strict-sequencing property, we
had only an existential quantifier; thus, taking the complement property
turned it into a universal path quantifier, which can be expressed in LTL.
But where we have alternating quantifiers, taking the complement property
doesn’t help in general.

Let’s go back to the mutual exclusion example. The reason liveness failed
in our first attempt at modelling mutual exclusion is that non-determinism
means it might continually favour one process over another. The problem is
that the state s3 does not distinguish between which of the processes first
went into its trying state. We can solve this by splitting s3 into two states.

The second modelling attempt The two states s3 and s9 in Figure 3.8
both correspond to the state s3 in our first modelling attempt. They both
record that the two processes are in their trying states, but in s3 it is im-
plicitly recorded that it is process 1’s turn, whereas in s9 it is process 2’s
turn. Note that states s3 and s9 both have the labelling t1t2; the definition of
transition systems does not preclude this. We can think of there being some
other, hidden, variables which are not part of the initial labelling, which
distinguish s3 and s9.

Remark 3.11 The four properties of safety, liveness, non-blocking and no-
strict-sequencing are satisfied by the model in Figure 3.8. (Since the non-
blocking property has not yet been written in temporal logic, we can only
check it informally.)

In this second modelling attempt, our transition system is still slightly
over-simplified, because we are assuming that it will move to a different
state on every tick of the clock (there are no transitions to the same state).
We may wish to model that a process can stay in its critical state for several
ticks, but if we include an arrow from s4, or s7, to itself, we will again violate
liveness. This problem will be solved later in this chapter when we consider
‘fairness constraints’ (Section 3.6.2).

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are

now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

192 3 Verification by model checking

The following input to SMV:

MODULE main
VAR
request : boolean;
status : {ready,busy};

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
1 : {ready,busy};

esac;
LTLSPEC
G(request -> F status=busy)

consists of a program and a specification. The program has two variables,
request of type boolean and status of enumeration type {ready, busy}:
0 denotes ‘false’ and 1 represents ‘true.’ The initial and subsequent values
of variable request are not determined within this program; this conserva-
tively models that these values are determined by an external environment.
This under-specification of request implies that the value of variable status
is partially determined: initially, it is ready; and it becomes busy whenever
request is true. If request is false, the next value of status is not deter-
mined.

Note that the case 1: signifies the default case, and that case statements
are evaluated from the top down: if several expressions to the left of a ‘:’ are
true, then the command corresponding to the first, top-most true expression
will be executed. The program therefore denotes the transition system shown
in Figure 3.9; there are four states, each one corresponding to a possible value
of the two binary variables. Note that we wrote ‘busy’ as a shorthand for
‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since
variable request functions as a genuine environment in this model, the
program and the transition system are non-deterministic: i.e., the ‘next
state’ is not uniquely defined. Any state transition based on the behaviour
of status comes in a pair: to a successor state where request is false, or
true, respectively. For example, the state ‘¬req, busy’ has four states it can
move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are sim-
ply LTL formulas. Notice that SMV uses &, |, -> and ! for ∧, ∨, → and
¬, respectively, since they are available on standard keyboards. We may

3.3 Model checking: systems, tools, properties 193

req
ready busy

req

¬req
busyready

¬req

Figure 3.9. The model corresponding to the SMV program in the text.

easily verify that the specification of our module main holds of the model in
Figure 3.9.

Modules in SMV SMV supports breaking a system description into sev-
eral modules, to aid readability and to verify interaction properties. A mod-
ule is instantiated when a variable having that module name as its type is
declared. This defines a set of variables, one for each one declared in the
module description. In the example below, which is one of the ones dis-
tributed with SMV, a counter which repeatedly counts from 000 through to
111 is described by three single-bit counters. The module counter cell is
instantiated three times, with the names bit0, bit1 and bit2. The counter
module has one formal parameter, carry in, which is given the actual value
1 in bit0, and bit0.carry out in the instance bit1. Hence, the carry in of
module bit1 is the carry out of module bit0. Note that we use the period
‘.’ in m.v to access the variable v in module m. This notation is also used by
Alloy (see Chapter 2) and a host of programming languages to access fields
in record structures, or methods in objects. The keyword DEFINE is used
to assign the expression value & carry in to the symbol carry out (such
definitions are just a means for referring to the current value of a certain
expression).

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

LTLSPEC
G F bit2.carry_out

194 3 Verification by model checking

MODULE counter_cell(carry_in)
VAR
value : boolean;

ASSIGN
init(value) := 0;
next(value) := (value + carry_in) mod 2;

DEFINE
carry_out := value & carry_in;

The effect of the DEFINE statement could have been obtained by declaring
a new variable and assigning its value thus:

VAR
carry_out : boolean;

ASSIGN
carry_out := value & carry_in;

Notice that, in this assignment, the current value of the variable is assigned.
Defined symbols are usually preferable to variables, since they don’t increase
the state space by declaring new variables. However, they cannot be assigned
non-deterministically since they refer only to another expression.

Synchronous and asynchronous composition By default, modules
in SMV are composed synchronously : this means that there is a global clock
and, each time it ticks, each of the modules executes in parallel. By use of
the process keyword, it is possible to compose the modules asynchronously.
In that case, they run at different ‘speeds,’ interleaving arbitrarily. At each
tick of the clock, one of them is non-deterministically chosen and executed
for one cycle. Asynchronous interleaving composition is useful for describing
communication protocols, asynchronous circuits and other systems whose
actions are not synchronised to a global clock.

The bit counter above is synchronous, whereas the examples below of
mutual exclusion and the alternating bit protocol are asynchronous.

3.3.3 Running NuSMV

The normal use of NuSMV is to run it in batch mode, from a Unix shell or
command prompt in Windows. The command line

NuSMV counter3.smv

3.3 Model checking: systems, tools, properties 195

will analyse the code in the file counter3.smv and report on the specifica-
tions it contains. One can also run NuSMV interactively. In that case, the
command line

NuSMV -int counter3.smv

enters NuSMV’s command-line interpreter. From there, there is a variety
of commands you can use which allow you to compile the description and
run the specification checks, as well as inspect partial results and set various
parameters. See the NuSMV user manual for more details.

NuSMV also supports bounded model checking, invoked by the command-
line option -bmc. Bounded model checking looks for counterexamples in
order of size, starting with counterexamples of length 1, then 2, etc., up
to a given threshold (10 by default). Note that bounded model checking
is incomplete: failure to find a counterexample does not mean that there
is none, but only that there is none of length up to the threshold. For
related reasons, this incompleteness features also in Alloy and its constraint
analyzer. Thus, while a negative answer can be relied on (if NuSMV finds a
counterexample, it is valid), a positive one cannot. References on bounded
model checking can be found in the bibliographic notes on page 254. Later
on, we use bounded model checking to prove the optimality of a scheduler.

3.3.4 Mutual exclusion revisited

Figure 3.10 gives the SMV code for a mutual exclusion protocol. This code
consists of two modules, main and prc. The module main has the variable
turn, which determines whose turn it is to enter the critical section if both
are trying to enter (recall the discussion about the states s3 and s9 in Sec-
tion 3.3.1).

The module main also has two instantiations of prc. In each of these
instantiations, st is the status of a process (saying whether it is in its critical
section, or not, or trying) and other-st is the status of the other process
(notice how this is passed as a parameter in the third and fourth lines of
main).

The value of st evolves in the way described in a previous section: when
it is n, it may stay as n or move to t. When it is t, if the other one is n, it will
go straight to c, but if the other one is t, it will check whose turn it is before
going to c. Then, when it is c, it may move back to n. Each instantiation of
prc gives the turn to the other one when it gets to its critical section.

An important feature of SMV is that we can restrict its search tree to
execution paths along which an arbitrary boolean formula about the state

196 3 Verification by model checking

MODULE main

VAR

pr1: process prc(pr2.st, turn, 0);

pr2: process prc(pr1.st, turn, 1);

turn: boolean;

ASSIGN

init(turn) := 0;

-- safety

LTLSPEC G!((pr1.st = c) & (pr2.st = c))

-- liveness

LTLSPEC G((pr1.st = t) -> F (pr1.st = c))

LTLSPEC G((pr2.st = t) -> F (pr2.st = c))

-- ‘negation’ of strict sequencing (desired to be false)

LTLSPEC G(pr1.st=c -> (G pr1.st=c | (pr1.st=c U

(!pr1.st=c & G !pr1.st=c | ((!pr1.st=c) U pr2.st=c)))))

MODULE prc(other-st, turn, myturn)

VAR

st: {n, t, c};
ASSIGN

init(st) := n;

next(st) :=

case

(st = n) : {t,n};
(st = t) & (other-st = n) : c;

(st = t) & (other-st = t) & (turn = myturn): c;

(st = c) : {c,n};
1 : st;

esac;

next(turn) :=

case

turn = myturn & st = c : !turn;

1 : turn;

esac;

FAIRNESS running

FAIRNESS !(st = c)

Figure 3.10. SMV code for mutual exclusion. Because W is not sup-

ported by SMV, we had to make use of equivalence (3.3) to write the

no-strict-sequencing formula as an equivalent but longer formula in-

volving U.

3.3 Model checking: systems, tools, properties 197

φ is true infinitely often. Because this is often used to model fair access to
resources, it is called a fairness constraint and introduced by the keyword
FAIRNESS. Thus, the occurrence of FAIRNESS φ means that SMV, when
checking a specification ψ, will ignore any path along which φ is not satisfied
infinitely often.

In the module prc, we restrict model checks to computation paths along
which st is infinitely often not equal to c. This is because our code allows
the process to stay in its critical section as long as it likes. Thus, there
is another opportunity for liveness to fail: if process 2 stays in its critical
section forever, process 1 will never be able to enter. Again, we ought not
to take this kind of violation into account, since it is patently unfair if a
process is allowed to stay in its critical section for ever. We are looking for
more subtle violations of the specifications, if there are any. To avoid the
one above, we stipulate the fairness constraint !(st=c).

If the module in question has been declared with the process keyword,
then at each time point SMV will non-deterministically decide whether or
not to select it for execution, as explained earlier. We may wish to ignore
paths in which a module is starved of processor time. The reserved word
running can be used instead of a formula in a fairness constraint: writing
FAIRNESS running restricts attention to execution paths along which the
module in which it appears is selected for execution infinitely often.

In prc, we restrict ourselves to such paths, since, without this restriction,
it would be easy to violate the liveness constraint if an instance of prc were
never selected for execution. We assume the scheduler is fair; this assumption
is codified by two FAIRNESS clauses. We return to the issue of fairness, and
the question of how our model-checking algorithm copes with it, in the next
section.

Please run this program in NuSMV to see which specifications hold for
it.

The transition system corresponding to this program is shown in
Figure 3.11. Each state shows the values of the variables; for example, ct1
is the state in which process 1 and 2 are critical and trying, respectively,
and turn=1. The labels on the transitions show which process was selected
for execution. In general, each state has several transitions, some in which
process 1 moves and others in which process 2 moves.

This model is a bit different from the previous model given for mutual
exclusion in Figure 3.8, for these two reasons:

� Because the boolean variable turn has been explicitly introduced to distinguish
between states s3 and s9 of Figure 3.8, we now distinguish between certain states

198 3 Verification by model checking

cn
0

tn
0

tc
0

tt
0

nn
0

ct
0

1,
2

2
1

1

1

2

1,
2

1

2

2

2

2
1

1

2

1

1,
2

1
1,

2

1,
2

1
2

2

2

1
2

1

1

1

2

1

2

2

nn
1

tn
1

cn
1

ct
1

nt
1

tt
1

nc
1

tc
1

1,
2

2

nc
0

nt
0

1,
2

2
1

1,
2

1,
2

1

1,
2

Figure 3.11. The transition system corresponding to the SMV code

in Figure 3.10. The labels on the transitions denote the process which

makes the move. The label 1, 2 means that either process could make

that move.

3.3 Model checking: systems, tools, properties 199

(for example, ct0 and ct1) which were identical before. However, these states
are not distinguished if you look just at the transitions from them. Therefore,
they satisfy the same LTL formulas which don’t mention turn. Those states are
distinguished only by the way they can arise.

� We have eliminated an over-simplification made in the model of Figure 3.8. Recall
that we assumed the system would move to a different state on every tick of the
clock (there were no transitions from a state to itself). In Figure 3.11, we allow
transitions from each state to itself, representing that a process was chosen for
execution and did some private computation, but did not move in or out of its
critical section. Of course, by doing this we have introduced paths in which one
process gets stuck in its critical section, whence the need to invoke a fairness
constraint to eliminate such paths.

3.3.5 The ferryman

You may recall the puzzle of a ferryman, goat, cabbage, and wolf all on one
side of a river. The ferryman can cross the river with at most one passenger
in his boat. There is a behavioural conflict between:

1. the goat and the cabbage; and
2. the goat and the wolf;

if they are on the same river bank but the ferryman crosses the river or stays
on the other bank.

Can the ferryman transport all goods to the other side, without any con-
flicts occurring? This is a planning problem, but it can be solved by model
checking. We describe a transition system in which the states represent which
goods are at which side of the river. Then we ask if the goal state is reach-
able from the initial state: Is there a path from the initial state such that it
has a state along it at which all the goods are on the other side, and during
the transitions to that state the goods are never left in an unsafe, conflicting
situation?

We model all possible behaviour (including that which results in conflicts)
as a NuSMV program (Figure 3.12). The location of each agent is modelled
as a boolean variable: 0 denotes that the agent is on the initial bank, and
1 the destination bank. Thus, ferryman = 0 means that the ferryman is
on the initial bank, ferryman = 1 that he is on the destination bank, and
similarly for the variables goat, cabbage and wolf.

The variable carry takes a value indicating whether the goat, cabbage,
wolf or nothing is carried by the ferryman. The definition of next(carry)
works as follows. It is non-deterministic, but the set from which a value is
non-deterministically chosen is determined by the values of ferryman, goat,

MODULE main

VAR

ferryman : boolean;

goat : boolean;

cabbage : boolean;

wolf : boolean;

carry : {g,c,w,0};
ASSIGN

init(ferryman) := 0; init(goat) := 0;

init(cabbage) := 0; init(wolf) := 0;

init(carry) := 0;

next(ferryman) := 0,1;

next(carry) := case

ferryman=goat : g;

1 : 0;

esac union

case

ferryman=cabbage : c;

1 : 0;

esac union

case

ferryman=wolf : w;

1 : 0;

esac union 0;

next(goat) := case

ferryman=goat & next(carry)=g : next(ferryman);

1 : goat;

esac;

next(cabbage) := case

ferryman=cabbage & next(carry)=c : next(ferryman);

1 : cabbage;

esac;

next(wolf) := case

ferryman=wolf & next(carry)=w : next(ferryman);

1 : wolf;

esac;

LTLSPEC !(((goat=cabbage | goat=wolf) -> goat=ferryman)

U (cabbage & goat & wolf & ferryman))

Figure 3.12. NuSMV code for the ferryman planning problem.

3.3 Model checking: systems, tools, properties 201

etc., and always includes 0. If ferryman = goat (i.e., they are on the same
side) then g is a member of the set from which next(carry) is chosen. The
situation for cabbage and wolf is similar. Thus, if ferryman = goat = wolf
=
cabbage then that set is {g, w, 0}. The next value assigned to ferryman is
non-deterministic: he can choose to cross or not to cross the river. But the
next values of goat, cabbage and wolf are deterministic, since whether they
are carried or not is determined by the ferryman’s choice, represented by the
non-deterministic assignment to carry; these values follow the same pattern.

Note how the boolean guards refer to state bits at the next state. The
SMV compiler does a dependency analysis and rejects circular dependencies
on next values. (The dependency analysis is rather pessimistic: sometimes
NuSMV complains of circularity even in situations when it could be resolved.
The original CMU-SMV is more liberal in this respect.)

Running NuSMV We seek a path satisfying φ U ψ, where ψ asserts the
final goal state, and φ expresses the safety condition (if the goat is with
the cabbage or the wolf, then the ferryman is there, too, to prevent any
untoward behaviour). Thus, we assert that all paths satisfy ¬(φ U ψ), i.e.,
no path satisfies φ U ψ. We hope this is not the case, and NuSMV will give
us an example path which does satisfy φ U ψ. Indeed, running NuSMV gives
us the path of Figure 3.13, which represents a solution to the puzzle.

The beginning of the generated path represents the usual solution to this
puzzle: the ferryman takes the goat first, then goes back for the cabbage. To
avoid leaving the goat and the cabbage together, he takes the goat back, and
picks up the wolf. Now the wolf and the cabbage are on the destination side,
and he goes back again to get the goat. This brings us to State 1.9, where
the ferryman appears to take a well-earned break. But the path continues.
States 1.10 to 1.15 show that he takes his charges back to the original side
of the bank; first the cabbage, then the wolf, then the goat. Unfortunately
it appears that the ferryman’s clever plan up to state 1.9 is now spoiled,
because the goat meets an unhappy end in state 1.11.

What went wrong? Nothing, actually. NuSMV has given us an infinite
path, which loops around the 15 illustrated states. Along the infinite path,
the ferryman repeatedly takes his goods across (safely), and then back again
(unsafely). This path does indeed satisfy the specification φ U ψ, which as-
serts the safety of the forward journey but says nothing about what happens
after that. In other words, the path is correct; it satisfies φ U ψ (with ψ oc-
curring at state 8). What happens along the path after that has no bearing
on φ U ψ.

202 3 Verification by model checking

acws-0116% nusmv ferryman.smv

*** This is NuSMV 2.1.2 (compiled 2002-11-22 12:00:00)

*** For more information of NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** Please report bugs to <nusmv-users@irst.itc.it>.

-- specification !(((goat = cabbage | goat = wolf) -> goat = ferryman)

U (((cabbage & goat) & wolf) & ferryman)) is false

-- as demonstrated by the following execution sequence

-- loop starts here --

-> State 1.1 <-

ferryman = 0 -> State 1.8 <-

goat = 0 ferryman = 1

cabbage = 0 goat = 1

wolf = 0 carry = g

carry = 0 -> State 1.9 <-

-> State 1.2 <- -> State 1.10 <-

ferryman = 1 ferryman = 0

goat = 1 cabbage = 0

carry = g carry = c

-> State 1.3 <- -> State 1.11 <-

ferryman = 0 ferryman = 1

carry = 0 carry = 0

-> State 1.4 <- -> State 1.12 <-

ferryman = 1 ferryman = 0

cabbage = 1 wolf = 0

carry = c carry = w

-> State 1.5 <- -> State 1.13 <-

ferryman = 0 ferryman = 1

goat = 0 carry = 0

carry = g -> State 1.14 <-

-> State 1.6 <- ferryman = 0

ferryman = 1 goat = 0

wolf = 1 carry = g

carry = w -> State 1.15 <-

-> State 1.7 <- carry = 0

ferryman = 0

carry = 0

Figure 3.13. A solution path to the ferryman puzzle. It is unnecessar-

ily long. Using bounded model checking will refine it into an optimal

solution.

Invoking bounded model checking will produce the shortest possible path
to violate the property; in this case, it is states 1.1 to 1.8 of the illus-
trated path. It is the shortest, optimal solution to our planning problem
since the model check NuSMV -bmc -bmc_length 7 ferryman.smv shows
that the LTL formula holds in that model, meaning that no solution with
fewer than seven transitions is possible.

3.3 Model checking: systems, tools, properties 203

One might wish to verify whether there is a solution which involves three
journeys for the goat. This can be done by altering the LTL formula. In-
stead of seeking a path satisfying φ U ψ, where φ equals (goat = cabbage ∨
goat = wolf) → goat = ferryman and ψ equals cabbage ∧ goat ∧ wolf ∧
ferryman, we now seek a path satisfying (φ U ψ) ∧ G (goat → G goat). The
last bit says that once the goat has crossed, he remains across; otherwise,
the goat makes at least three trips. NuSMV verifies that the negation of this
formula is true, confirming that there is no such solution.

3.3.6 The alternating bit protocol

The alternating bit protocol (ABP) is a protocol for transmitting messages
along a ‘lossy line,’ i.e., a line which may lose or duplicate messages. The
protocol guarantees that, providing the line doesn’t lose infinitely many mes-
sages, communication between the sender and the receiver will be successful.
(We allow the line to lose or duplicate messages, but it may not corrupt mes-
sages; however, there is no way of guaranteeing successful transmission along
a line which can corrupt.)

The ABP works as follows. There are four entities, or agents: the sender,
the receiver, the message channel and the acknowledgement channel. The
sender transmits the first part of the message together with the ‘control’
bit 0. If, and when, the receiver receives a message with the control bit 0,
it sends 0 along the acknowledgement channel. When the sender receives
this acknowledgement, it sends the next packet with the control bit 1. If
and when the receiver receives this, it acknowledges by sending a 1 on the
acknowledgement channel. By alternating the control bit, both receiver and
sender can guard against duplicating messages and losing messages (i.e.,
they ignore messages that have the unexpected control bit).

If the sender doesn’t get the expected acknowledgement, it continually re-
sends the message, until the acknowledgement arrives. If the receiver doesn’t
get a message with the expected control bit, it continually resends the pre-
vious acknowledgement.

Fairness is also important for the ABP. It comes in because, although
we want to model the fact that the channel can lose messages, we want to
assume that, if we send a message often enough, eventually it will arrive.
In other words, the channel cannot lose an infinite sequence of messages. If
we did not make this assumption, then the channels could lose all messages
and, in that case, the ABP would not work.

Let us see this in the concrete setting of SMV. We may assume that
the text to be sent is divided up into single-bit messages, which are sent

204 3 Verification by model checking

MODULE sender(ack)
VAR

st : {sending,sent};
message1 : boolean;
message2 : boolean;

ASSIGN
init(st) := sending;
next(st) := case

ack = message2 & !(st=sent) : sent;
1 : sending;

esac;
next(message1) :=

case
st = sent : {0,1};
1 : message1;

esac;
next(message2) :=

case
st = sent : !message2;
1 : message2;

esac;
FAIRNESS running
LTLSPEC G F st=sent

Figure 3.14. The ABP sender in SMV.

sequentially. The variable message1 is the current bit of the message be-
ing sent, whereas message2 is the control bit. The definition of the mod-
ule sender is given in Figure 3.14. This module spends most of its time in
st=sending, going only briefly to st=sent when it receives an acknowledge-
ment corresponding to the control bit of the message it has been sending.
The variables message1 and message2 represent the actual data being sent
and the control bit, respectively. On successful transmission, the module ob-
tains a new message to send and returns to st=sending. The new message1
is obtained non-deterministically (i.e., from the environment); message2 al-
ternates in value. We impose FAIRNESS running, i.e., the sender must be
selected to run infinitely often. The LTLSPEC tests that we can always suc-
ceed in sending the current message. The module receiver is programmed
in a similar way, in Figure 3.15.

We also need to describe the two channels, in Figure 3.16. The acknowl-
edgement channel is an instance of the one-bit channel one-bit-chan below.
Its lossy character is specified by the assignment to forget. The value of

3.3 Model checking: systems, tools, properties 205

MODULE receiver(message1,message2)

VAR

st : {receiving,received};
ack : boolean;

expected : boolean;

ASSIGN

init(st) := receiving;

next(st) := case

message2=expected & !(st=received) : received;

1 : receiving;

esac;

next(ack) :=

case

st = received : message2;

1 : ack;

esac;

next(expected) :=

case

st = received : !expected;

1 : expected;

esac;

FAIRNESS running

LTLSPEC G F st=received

Figure 3.15. The ABP receiver in SMV.

input should be transmitted to output, unless forget is true. The two-bit
channel two-bit-chan, used to send messages, is similar. Again, the non-
deterministic variable forget determines whether the current bit is lost or
not. Either both parts of the message get through, or neither of them does
(the channel is assumed not to corrupt messages).

The channels have fairness constraint which are intended to model the fact
that, although channels can lose messages, we assume that they infinitely
often transmit the message correctly. (If this were not the case, then we
could find an uninteresting violation of the liveness property, for example a
path along which all messages from a certain time onwards get lost.)

It is interesting to note that the fairness constraint ‘infinitely often
!forget’ is not sufficient to prove the desired properties, for although it
forces the channel to transmit infinitely often, it doesn’t prevent it from
(say) dropping all the 0 bits and transmitting all the 1 bits. That is why
we use the stronger fairness constraints shown. Some systems allow fairness

206 3 Verification by model checking

MODULE one-bit-chan(input)
VAR

output : boolean;
forget : boolean;

ASSIGN
next(output) := case

forget : output;
1: input;

esac;
FAIRNESS running
FAIRNESS input & !forget
FAIRNESS !input & !forget

MODULE two-bit-chan(input1,input2)
VAR

forget : boolean;
output1 : boolean;
output2 : boolean;

ASSIGN
next(output1) := case

forget : output1;
1: input1;

esac;
next(output2) := case

forget : output2;
1: input2;

esac;
FAIRNESS running
FAIRNESS input1 & !forget
FAIRNESS !input1 & !forget
FAIRNESS input2 & !forget
FAIRNESS !input2 & !forget

Figure 3.16. The two modules for the two ABP channels in SMV.

contraints of the form ‘infinitely often p implies infinitely often q’, which
would be more satisfactory here, but is not allowed by SMV.

Finally, we tie it all together with the module main (Figure 3.17). Its role
is to connect together the components of the system, and giving them initial
values of their parameters. Since the first control bit is 0, we also initialise
the receiver to expect a 0. The receiver should start off by sending 1 as its

3.4 Branching-time logic 207

MODULE main
VAR

s : process sender(ack_chan.output);
r : process receiver(msg_chan.output1,msg_chan.output2);
msg_chan : process two-bit-chan(s.message1,s.message2);
ack_chan : process one-bit-chan(r.ack);

ASSIGN
init(s.message2) := 0;
init(r.expected) := 0;
init(r.ack) := 1;
init(msg_chan.output2) := 1;
init(ack_chan.output) := 1;

LTLSPEC G (s.st=sent & s.message1=1 -> msg_chan.output1=1)

Figure 3.17. The main ABP module.

acknowledgement, so that sender does not think that its very first message
is being acknowledged before anything has happened. For the same reason,
the output of the channels is initialised to 1.

The specifications for ABP. Our SMV program satisfies the following spec-
ifications:

Safety: If the message bit 1 has been sent and the correct acknowledge-
ment has been returned, then a 1 was indeed received by the receiver:
G (S.st=sent & S.message1=1 -> msg chan.output1=1).

Liveness: Messages get through eventually. Thus, for any state there is
inevitably a future state in which the current message has got through. In
the module sender, we specified G F st=sent. (This specification could
equivalently have been written in the main module, as G F S.st=sent.)
Similarly, acknowledgements get through eventually. In the module
receiver, we write G F st=received.

3.4 Branching-time logic

In our analysis of LTL (linear-time temporal logic) in the preceding sections,
we noted that LTL formulas are evaluated on paths. We defined that a state
of a system satisfies an LTL formula if all paths from the given state satisfy
it. Thus, LTL implicitly quantifies universally over paths. Therefore, prop-
erties which assert the existence of a path cannot be expressed in LTL. This
problem can partly be alleviated by considering the negation of the property
in question, and interpreting the result accordingly. To check whether there

208 3 Verification by model checking

exists a path from s satisfying the LTL formula φ, we check whether all paths
satisfy ¬φ; a positive answer to this is a negative answer to our original ques-
tion, and vice versa. We used this approach when analysing the ferryman
puzzle in the previous section. However, as already noted, properties which
mix universal and existential path quantifiers cannot in general be model
checked using this approach, because the complement formula still has a mix.

Branching-time logics solve this problem by allowing us to quantify ex-
plicitly over paths. We will examine a logic known as Computation Tree
Logic, or CTL. In CTL, as well as the temporal operators U, F, G and X of
LTL we also have quantifiers A and E which express ‘all paths’ and ‘exists
a path’, respectively. For example, we can write:

� There is a reachable state satisfying q: this is written EF q.
� From all reachable states satisfying p, it is possible to maintain p continuously

until reaching a state satisfying q: this is written AG (p→ E[p U q]).
� Whenever a state satisfying p is reached, the system can exhibit q continuously

forevermore: AG (p→ EG q).
� There is a reachable state from which all reachable states satisfy p: EF AG p.

3.4.1 Syntax of CTL

Computation Tree Logic, or CTL for short, is a branching-time logic, mean-
ing that its model of time is a tree-like structure in which the future is not
determined; there are different paths in the future, any one of which might
be the ‘actual’ path that is realised.

As before, we work with a fixed set of atomic formulas/descriptions (such
as p, q, r, . . . , or p1, p2, . . .).

Definition 3.12 We define CTL formulas inductively via a Backus Naur
form as done for LTL:

φ ::= ⊥ | � | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | AXφ | EXφ |
AFφ | EFφ | AGφ | EGφ | A[φ U φ] | E[φ U φ]

where p ranges over a set of atomic formulas.

Notice that each of the CTL temporal connectives is a pair of symbols.
The first of the pair is one of A and E. A means ‘along All paths’ (inevitably)
and E means ‘along at least (there Exists) one path’ (possibly). The second
one of the pair is X, F, G, or U, meaning ‘neXt state,’ ‘some Future state,’
‘all future states (Globally)’ and Until, respectively. The pair of symbols
in E[φ1 U φ2], for example, is EU. In CTL, pairs of symbols like EU are

3.4 Branching-time logic 209

indivisible. Notice that AU and EU are binary. The symbols X, F, G and
U cannot occur without being preceded by an A or an E; similarly, every A
or E must have one of X, F, G and U to accompany it.

Usually weak-until (W) and release (R) are not included in CTL, but they
are derivable (see Section 3.4.5).

Convention 3.13 We assume similar binding priorities for the CTL con-
nectives to what we did for propositional and predicate logic. The unary
connectives (consisting of ¬ and the temporal connectives AG, EG, AF, EF,
AX and EX) bind most tightly. Next in the order come ∧ and ∨; and after
that come →, AU and EU .

Naturally, we can use brackets in order to override these priorities. Let
us see some examples of well-formed CTL formulas and some examples
which are not well-formed, in order to understand the syntax. Suppose
that p, q and r are atomic formulas. The following are well-formed CTL
formulas:

� AG (q → EG r), note that this is not the same as AG q → EG r, for according to
Convention 3.13, the latter formula means (AG q) → (EG r)

� EF E[r U q]
� A[p U EF r]
� EF EG p→ AF r, again, note that this binds as (EF EG p) → AF r, not

EF (EG p→ AF r) or EF EG (p→ AF r)
� A[p1 U A[p2 U p3]]
� E[A[p1 U p2] U p3]
� AG (p→ A[p U (¬p ∧ A[¬p U q])]).

It is worth spending some time seeing how the syntax rules allow us to
construct each of these. The following are not well-formed formulas:

� EF G r
� A¬G¬p
� F [r U q]
� EF (r U q)
� AEF r
� A[(r U q) ∧ (p U r)].

It is especially worth understanding why the syntax rules don’t allow us to
construct these. For example, take EF (r U q). The problem with this string
is that U can occur only when paired with an A or an E. The E we have is
paired with the F. To make this into a well-formed CTL formula, we would
have to write EF E[r U q] or EFA[r U q].

210 3 Verification by model checking

AU

EUAX

¬¬ EX

pp ∧

qp

Figure 3.18. The parse tree of a CTL formula without infix notation.

Notice that we use square brackets after the A or E, when the paired
operator is a U. There is no strong reason for this; you could use ordinary
round brackets instead. However, it often helps one to read the formula
(because we can more easily spot where the corresponding close bracket is).
Another reason for using the square brackets is that SMV insists on it.

The reason A[(r U q) ∧ (p U r)] is not a well-formed formula is that the
syntax does not allow us to put a boolean connective (like ∧) directly inside
A[] or E[]. Occurrences of A or E must be followed by one of G, F, X or U;
when they are followed by U, it must be in the form A[φ U ψ]. Now, the φ
and the ψ may contain ∧, since they are arbitrary formulas; so A[(p ∧ q) U
(¬r → q)] is a well-formed formula.

Observe that AU and EU are binary connectives which mix infix and
prefix notation. In pure infix, we would write φ1 AU φ2, whereas in pure
prefix we would write AU(φ1, φ2).

As with any formal language, and as we did in the previous two chapters,
it is useful to draw parse trees for well-formed formulas. The parse tree for
A[AX¬p U E[EX (p ∧ q) U ¬p]] is shown in Figure 3.18.

Definition 3.14 A subformula of a CTL formula φ is any formula ψ whose
parse tree is a subtree of φ’s parse tree.

3.4 Branching-time logic 211

3.4.2 Semantics of computation tree logic

CTL formulas are interpreted over transition systems (Definition 3.4). Let
M = (S,→, L) be such a model, s ∈ S and φ a CTL formula. The definition
of whether M, s � φ holds is recursive on the structure of φ, and can be
roughly understood as follows:

� If φ is atomic, satisfaction is determined by L.
� If the top-level connective of φ (i.e., the connective occurring top-most in the

parse tree of φ) is a boolean connective (∧, ∨, ¬, � etc.) then the satisfaction
question is answered by the usual truth-table definition and further recursion
down φ.

� If the top level connective is an operator beginning A, then satisfaction holds if
all paths from s satisfy the ‘LTL formula’ resulting from removing the A symbol.

� Similarly, if the top level connective begins with E, then satisfaction holds if
some path from s satisfy the ‘LTL formula’ resulting from removing the E.

In the last two cases, the result of removing A or E is not strictly an LTL
formula, for it may contain further As or Es below. However, these will be
dealt with by the recursion.

The formal definition of M, s � φ is a bit more verbose:

Definition 3.15 Let M = (S,→, L) be a model for CTL, s in S, φ a CTL
formula. The relation M, s � φ is defined by structural induction on φ:

1. M, s � � and M, s
� ⊥
2. M, s � p iff p ∈ L(s)
3. M, s � ¬φ iff M, s
� φ
4. M, s � φ1 ∧ φ2 iff M, s � φ1 and M, s � φ2

5. M, s � φ1 ∨ φ2 iff M, s � φ1 or M, s � φ2

6. M, s � φ1 → φ2 iff M, s
� φ1 or M, s � φ2.
7. M, s � AXφ iff for all s1 such that s→ s1 we have M, s1 � φ. Thus, AX says:

‘in every next state.’
8. M, s � EXφ iff for some s1 such that s→ s1 we have M, s1 � φ. Thus, EX

says: ‘in some next state.’ E is dual to A – in exactly the same way that ∃ is
dual to ∀ in predicate logic.

9. M, s � AGφ holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals s, and
all si along the path, we have M, si � φ. Mnemonically: for All computation
paths beginning in s the property φ holds Globally. Note that ‘along the path’
includes the path’s initial state s.

10. M, s � EGφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,
and for all si along the path, we have M, si � φ. Mnemonically: there Exists
a path beginning in s such that φ holds Globally along the path.

212 3 Verification by model checking

φ

Figure 3.19. A system whose starting state satisfies EF φ.

11. M, s � AFφ holds iff for all paths s1 → s2 → . . ., where s1 equals s, there is
some si such that M, si � φ. Mnemonically: for All computation paths begin-
ning in s there will be some Future state where φ holds.

12. M, s � EFφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,
and for some si along the path, we have M, si � φ. Mnemonically: there Exists
a computation path beginning in s such that φ holds in some Future state;

13. M, s � A[φ1 U φ2] holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals
s, that path satisfies φ1 U φ2, i.e., there is some si along the path, such that
M, si � φ2, and, for each j < i, we have M, sj � φ1. Mnemonically: All com-
putation paths beginning in s satisfy that φ1 Until φ2 holds on it.

14. M, s � E[φ1 U φ2] holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals
s, and that path satisfies φ1 U φ2 as specified in 13. Mnemonically: there Exists
a computation path beginning in s such that φ1 Until φ2 holds on it.

Clauses 9–14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation
tree, whence ‘computation tree logic.’ The diagrams in Figures 3.19–3.22
show schematically systems whose starting states satisfy the formulas EFφ,
EGφ, AGφ and AFφ, respectively. Of course, we could add more φ to any
of these diagrams and still preserve the satisfaction – although there is noth-
ing to add for AG . The diagrams illustrate a ‘least’ way of satisfying the
formulas.

3.4 Branching-time logic 213

φ

φ

φ

Figure 3.20. A system whose starting state satisfies EG φ.

φ

φ φ

φ φ

φ

φ

φφ φ

Figure 3.21. A system whose starting state satisfies AG φ.

Recall the transition system of Figure 3.3 for the designated starting state
s0, and the infinite tree illustrated in Figure 3.5. Let us now look at some
example checks for this system.

1. M, s0 � p ∧ q holds since the atomic symbols p and q are contained in the node
of s0.

2. M, s0 � ¬r holds since the atomic symbol r is not contained in node s0.

214 3 Verification by model checking

φ

φ

φφ φ

Figure 3.22. A system whose starting state satisfies AF φ.

3. M, s0 � � holds by definition.
4. M, s0 � EX (q ∧ r) holds since we have the leftmost computation path s0 →

s1 → s0 → s1 → . . . in Figure 3.5, whose second node s1 contains q and r.
5. M, s0 � ¬AX (q ∧ r) holds since we have the rightmost computation path s0 →

s2 → s2 → s2 → . . . in Figure 3.5, whose second node s2 only contains r, but
not q.

6. M, s0 � ¬EF (p ∧ r) holds since there is no computation path beginning in s0
such that we could reach a state where p ∧ r would hold. This is so because
there is simply no state whatsoever in this system where p and r hold at the
same time.

7. M, s2 � EG r holds since there is a computation path s2 → s2 → s2 → . . .

beginning in s2 such that r holds in all future states of that path; this is
the only computation path beginning at s2 and so M, s2 � AG r holds as well.

8. M, s0 � AF r holds since, for all computation paths beginning in s0, the system
reaches a state (s1 or s2) such that r holds.

9. M, s0 � E[(p ∧ q) U r] holds since we have the rightmost computation path
s0 → s2 → s2 → s2 → . . . in Figure 3.5, whose second node s2 (i = 1) satisfies
r, but all previous nodes (only j = 0, i.e., node s0) satisfy p ∧ q.

10. M, s0 � A[p U r] holds since p holds at s0 and r holds in any possible successor
state of s0, so p U r is true for all computation paths beginning in s0 (so we
may choose i = 1 independently of the path).

11. M, s0 � AG (p ∨ q ∨ r → EF EG r) holds since in all states reachable from s0
and satisfying p ∨ q ∨ r (all states in this case) the system can reach a state
satisfying EG r (in this case state s2).

3.4 Branching-time logic 215

3.4.3 Practical patterns of specifications

It’s useful to look at some typical examples of formulas, and compare the sit-
uation with LTL (Section 3.2.3). Suppose atomic descriptions include some
words such as busy and requested.

� It is possible to get to a state where started holds, but ready doesn’t:
EF (started ∧ ¬ready). To express impossibility, we simply negate the formula.

� For any state, if a request (of some resource) occurs, then it will eventually be
acknowledged:
AG (requested → AF acknowledged).

� The property that if the process is enabled infinitely often, then it runs in-
finitely often, is not expressible in CTL. In particular, it is not expressed by
AG AF enabled → AG AF running, or indeed any other insertion of A or E into
the corresponding LTL formula. The CTL formula just given expresses that if
every path has infinitely often enabled, then every path is infinitely often taken;
this is much weaker than asserting that every path which has infinitely often
enabled is infinitely often taken.

� A certain process is enabled infinitely often on every computation path:
AG (AF enabled).

� Whatever happens, a certain process will eventually be permanently deadlocked:
AF (AG deadlock).

� From any state it is possible to get to a restart state:
AG (EF restart).

� An upwards travelling lift at the second floor does not change its direction when
it has passengers wishing to go to the fifth floor:
AG (floor2 ∧ directionup ∧ ButtonPressed5 → A[directionup U floor5])
Here, our atomic descriptions are boolean expressions built from system vari-
ables, e.g., floor2.

� The lift can remain idle on the third floor with its doors closed:
AG (floor3 ∧ idle ∧ doorclosed → EG (floor3 ∧ idle ∧ doorclosed)).

� A process can always request to enter its critical section. Recall that this was
not expressible in LTL. Using the propositions of Figure 3.8, this may be written
AG (n1 → EX t1) in CTL.

� Processes need not enter their critical section in strict sequence. This was also
not expressible in LTL, though we expressed its negation. CTL allows us to
express it directly: EF (c1 ∧ E[c1 U (¬c1 ∧ E[¬c2 U c1])]).

3.4.4 Important equivalences between CTL formulas

Definition 3.16 Two CTL formulas φ and ψ are said to be semantically
equivalent if any state in any model which satisfies one of them also satisfies
the other; we denote this by φ ≡ ψ.

216 3 Verification by model checking

We have already noticed that A is a universal quantifier on paths and E
is the corresponding existential quantifier. Moreover, G and F are also uni-
versal and existential quantifiers, ranging over the states along a particular
path. In view of these facts, it is not surprising to find that de Morgan rules
exist:

¬AFφ ≡ EG¬φ
¬EFφ ≡ AG¬φ (3.6)

¬AXφ ≡ EX¬φ.
We also have the equivalences

AFφ ≡ A[� U φ] EFφ ≡ E[� U φ]

which are similar to the corresponding equivalences in LTL.

3.4.5 Adequate sets of CTL connectives

As in propositional logic and in LTL, there is some redundancy among the
CTL connectives. For example, the connective AX can be written ¬EX¬;
and AG, AF, EG and EF can be written in terms of AU and EU as follows:
first, write AGφ as ¬EF¬φ and EGφ as ¬AF¬φ, using (3.6), and then use
AFφ ≡ A[� U φ] and EFφ ≡ E[� U φ]. Therefore AU, EU and EX form
an adequate set of temporal connectives.

Also EG, EU, and EX form an adequate set, for we have the equivalence

A[φ U ψ] ≡ ¬(E[¬ψ U (¬φ ∧ ¬ψ)] ∨ EG¬ψ) (3.7)

which can be proved as follows:

A[φ U ψ] ≡ A[¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E¬[¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ]

≡ ¬E[(¬ψ U (¬φ ∧ ¬ψ)) ∨ G¬ψ]

≡ ¬(E[¬ψ U (¬φ ∧ ¬ψ)] ∨ EG¬ψ).

The first line is by Theorem 3.10, and the remainder by elementary manipu-
lation. (This proof involves intermediate formulas which violate the syntactic
formation rules of CTL; however, it is valid in the logic CTL* introduced in
the next section.) More generally, we have:

Theorem 3.17 A set of temporal connectives in CTL is adequate if, and
only if, it contains at least one of {AX ,EX }, at least one of {EG ,AF ,AU }
and EU .

3.5 CTL* and the expressive powers of LTL and CTL 217

This theorem is proved in a paper referenced in the bibliographic notes
at the end of the chapter. The connective EU plays a special role in that
theorem because neither weak-until W nor release R are primitive in CTL
(Definition 3.12). The temporal connectives AR, ER, AW and EW are all
definable in CTL:

� A[φ R ψ] = ¬E[¬φ U ¬ψ]
� E[φ R ψ] = ¬A[¬φ U ¬ψ]
� A[φ W ψ] = A[ψ R (φ ∨ ψ)], and then use the first equation above
� E[φ W ψ] = E[ψ R (φ ∨ ψ)], and then use the second one.

These definitions are justified by LTL equivalences in Sections 3.2.4
and 3.2.5. Some other noteworthy equivalences in CTL are the following:

AGφ ≡ φ ∧ AX AGφ

EGφ ≡ φ ∧ EX EGφ

AFφ ≡ φ ∨ AX AFφ
EFφ ≡ φ ∨ EX EFφ

A[φ U ψ] ≡ ψ ∨ (φ ∧ AX A[φ U ψ])
E[φ U ψ] ≡ ψ ∨ (φ ∧ EX E[φ U ψ]).

For example, the intuition for the third one is the following: in order to have
AFφ in a particular state, φ must be true at some point along each path
from that state. To achieve this, we either have φ true now, in the current
state; or we postpone it, in which case we must have AFφ in each of the next
states. Notice how this equivalence appears to define AF in terms of AX
and AF itself, an apparently circular definition. In fact, these equivalences
can be used to define the six connectives on the left in terms of AX and
EX , in a non-circular way. This is called the fixed-point characterisation of
CTL; it is the mathematical foundation for the model-checking algorithm
developed in Section 3.6.1; and we return to it later (Section 3.7).

3.5 CTL* and the expressive powers of LTL and CTL

CTL allows explicit quantification over paths, and in this respect it is more
expressive than LTL, as we have seen. However, it does not allow one to
select a range of paths by describing them with a formula, as LTL does.
In that respect, LTL is more expressive. For example, in LTL we can say
‘all paths which have a p along them also have a q along them,’ by writing
F p→ F q. It is not possible to write this in CTL because of the constraint
that every F has an associated A or E. The formula AF p→ AF q means

218 3 Verification by model checking

something quite different: it says ‘if all paths have a p along them, then
all paths have a q along them.’ One might write AG (p→ AF q), which is
closer, since it says that every way of extending every path to a p eventually
meets a q, but that is still not capturing the meaning of F p→ F q.

CTL* is a logic which combines the expressive powers of LTL and CTL,
by dropping the CTL constraint that every temporal operator (X, U, F, G)
has to be associated with a unique path quantifier (A, E). It allows us to
write formulas such as

� A[(p U r) ∨ (q U r)]: along all paths, either p is true until r, or q is true until r.
� A[X p ∨ XX p]: along all paths, p is true in the next state, or the next but one.
� E[G F p]: there is a path along which p is infinitely often true.

These formulas are not equivalent to, respectively, A[(p ∨ q) U r)], AX p ∨
AX AX p and EG EF p. It turns out that the first of them can be written
as a (rather long) CTL formula. The second and third do not have a CTL
equivalent.

The syntax of CTL* involves two classes of formulas:

� state formulas, which are evaluated in states:

φ ::= � | p | (¬φ) | (φ ∧ φ) | A[α] | E[α]

where p is any atomic formula and α any path formula; and
� path formulas, which are evaluated along paths:

α ::= φ | (¬α) | (α ∧ α) | (α U α) | (Gα) | (Fα) | (Xα)

where φ is any state formula. This is an example of an inductive definition
which is mutually recursive: the definition of each class depends upon the
definition of the other, with base cases p and �.

LTL and CTL as subsets of CTL* Although the syntax of LTL does
not include A and E, the semantic viewpoint of LTL is that we consider
all paths. Therefore, the LTL formula α is equivalent to the CTL* formula
A[α]. Thus, LTL can be viewed as a subset of CTL*.

CTL is also a subset of CTL*, since it is the fragment of CTL* in which
we restrict the form of path formulas to

α ::= (φ U φ) | (Gφ) | (Fφ) | (Xφ)

Figure 3.23 shows the relationship among the expressive powers of CTL,
LTL and CTL*. Here are some examples of formulas in each of the subsets

3.5 CTL* and the expressive powers of LTL and CTL 219

LTL

ψ1 ψ2 ψ3 ψ4CTL

CTL*

Figure 3.23. The expressive powers of CTL, LTL and CTL*.

shown:

In CTL but not in LTL: ψ1
def= AG EF p. This expresses: wherever we

have got to, we can always get to a state in which p is true. This is
also useful, e.g., in finding deadlocks in protocols.

The proof that AG EF p is not expressible in LTL is as follows. Let φ be
an LTL formula such that A[φ] is allegedly equivalent to AG EF p. Since
M, s � AG EF p in the left-hand diagram below, we have M, s � A[φ].
Now let M′ be as shown in the right-hand diagram. The paths from s

in M′ are a subset of those from s in M, so we have M′, s � A[φ]. Yet,
it is not the case that M′, s � AG EF p; a contradiction.

¬p¬p p

s st

In CTL*, but neither in CTL nor in LTL: ψ4
def= E[G F p], saying that

there is a path with infinitely many p.
The proof that this is not expressible in CTL is quite complex and may
be found in the papers co-authored by E. A. Emerson with others, given
in the references. (Why is it not expressible in LTL?)

In LTL but not in CTL: ψ3
def= A[G F p→ F q], saying that if there are in-

finitely many p along the path, then there is an occurrence of q. This
is an interesting thing to be able to say; for example, many fairness
constraints are of the form ‘infinitely often requested implies eventually
acknowledged’.

In LTL and CTL: ψ2
def= AG (p→ AF q) in CTL, or G (p→ F q) in LTL:

any p is eventually followed by a q.

Remark 3.18 We just saw that some (but not all) LTL formulas can be
converted into CTL formulas by adding an A to each temporal operator. For

220 3 Verification by model checking

a positive example, the LTL formula G (p→ F q) is equivalent to the CTL
formula AG (p→ AF q). We discuss two more negative examples:

� F G p and AF AG p are not equivalent, since F G p is satisfied, whereas AF AG p

is not satisfied, in the model

p ¬p p

In fact, AF AG p is strictly stronger than F G p.
� While the LTL formulas XF p and F X p are equivalent, and they are equivalent

to the CTL formula AX AF p, they are not equivalent to AF AX p. The latter
is strictly stronger, and has quite a strange meaning (try working it out).

Remark 3.19 There is a considerable literature comparing linear-time and
branching-time logics. The question of which one is ‘better’ has been debated
for about 20 years. We have seen that they have incomparable expressive
powers. CTL* is more expressive than either of them, but is computationally
much more expensive (as will be seen in Section 3.6). The choice between
LTL and CTL depends on the application at hand, and on personal prefer-
ence. LTL lacks CTL’s ability to quantify over paths, and CTL lacks LTL’s
finer-grained ability to describe individual paths. To many people, LTL ap-
pears to be more straightforward to use; as noted above, CTL formulas like
AFAX p seem hard to understand.

3.5.1 Boolean combinations of temporal formulas in CTL

Compared with CTL*, the syntax of CTL is restricted in two ways: it does
not allow boolean combinations of path formulas and it does not allow nest-
ing of the path modalities X, F and G. Indeed, we have already seen exam-
ples of the inexpressibility in CTL of nesting of path modalities, namely the
formulas ψ3 and ψ4 above.

In this section, we see that the first of these restrictions is only apparent;
we can find equivalents in CTL for formulas having boolean combinations
of path formulas. The idea is to translate any CTL formula having boolean
combinations of path formulas into a CTL formula that doesn’t. For exam-
ple, we may see that E[F p ∧ F q] ≡ EF [p ∧ EF q] ∨ EF [q ∧ EF p] since, if
we have F p ∧ F q along any path, then either the p must come before the q,
or the other way around, corresponding to the two disjuncts on the right.
(If the p and q occur simultaneously, then both disjuncts are true.)

3.6 Model-checking algorithms 221

Since U is like F (only with the extra complication of its first argument),
we find the following equivalence:

E[(p1 U q1) ∧ (p2 U q2)] ≡ E[(p1 ∧ p2) U (q1 ∧ E[p2 U q2])]

∨ E[(p1 ∧ p2) U (q2 ∧ E[p1 U q1])].

And from the CTL equivalence A[p U q] ≡ ¬(E[¬q U (¬p ∧ ¬q)] ∨ EG¬q)
(see Theorem 3.10) we can obtain E[¬(p U q)] ≡ E[¬q U (¬p ∧ ¬q)] ∨
EG¬q. Other identities we need in this translation include E[¬X p] ≡
EX¬p.

3.5.2 Past operators in LTL

The temporal operators X, U, F, etc. which we have seen so far refer to the
future. Sometimes we want to encode properties that refer to the past, such
as: ‘whenever q occurs, then there was some p in the past.’ To do this, we
may add the operators Y, S, O, H. They stand for yesterday, since, once, and
historically, and are the past analogues of X, U, F, G, respectively. Thus,
the example formula may be written G (q → O p).

NuSMV supports past operators in LTL. One could also add past opera-
tors to CTL (AY, ES, etc.) but NuSMV does not support them.

Somewhat counter-intuitively, past operators do not increase the expres-
sive power of LTL. That is to say, every LTL formula with past operators
can be written equivalently without them. The example formula above can
be written ¬p W q, or equivalently ¬(¬q U (p ∧ ¬q)) if one wants to avoid
W. This result is surprising, because it seems that being able to talk about
the past as well as the future allows more expressivity than talking about
the future alone. However, recall that LTL equivalence is quite crude: it says
that the two formulas are satisfied by exactly the same set of paths. The
past operators allow us to travel backwards along the path, but only to reach
points we could have reached by travelling forwards from its beginning. In
contrast, adding past operators to CTL does increase its expressive power,
because they can allow us to examine states not forward-reachable from the
present one.

3.6 Model-checking algorithms

The semantic definitions for LTL and CTL presented in Sections 3.2 and 3.4
allow us to test whether the initial states of a given system satisfy an LTL or
CTL formula. This is the basic model-checking question. In general, inter-
esting transition systems will have a huge number of states and the formula

222 3 Verification by model checking

we are interested in checking may be quite long. It is therefore well worth
trying to find efficient algorithms.

Although LTL is generally preferred by specifiers, as already noted, we
start with CTL model checking because its algorithm is simpler.

3.6.1 The CTL model-checking algorithm

Humans may find it easier to do model checks on the unwindings of models
into infinite trees, given a designated initial state, for then all possible paths
are plainly visible. However, if we think of implementing a model checker
on a computer, we certainly cannot unwind transition systems into infi-
nite trees. We need to do checks on finite data structures. For this reason,
we now have to develop new insights into the semantics of CTL. Such a
deeper understanding will provide the basis for an efficient algorithm which,
given M, s ∈ S and φ, computes whether M, s � φ holds. In the case that
φ is not satisfied, such an algorithm can be augmented to produce an ac-
tual path (= run) of the system demonstrating that M cannot satisfy φ.
That way, we may debug a system by trying to fix what enables runs which
refute φ.

There are various ways in which one could consider

M, s0
?
� φ

as a computational problem. For example, one could have the model M, the
formula φ and a state s0 as input; one would then expect a reply of the form
‘yes’ (M, s0 � φ holds), or ‘no’ (M, s0 � φ does not hold). Alternatively, the
inputs could be just M and φ, where the output would be all states s of the
model M which satisfy φ.

It turns out that it is easier to provide an algorithm for solving the second
of these two problems. This automatically gives us a solution to the first one,
since we can simply check whether s0 is an element of the output set.

The labelling algorithm We present an algorithm which, given a model
and a CTL formula, outputs the set of states of the model that satisfy the
formula. The algorithm does not need to be able to handle every CTL con-
nective explicitly, since we have already seen that the connectives ⊥, ¬ and
∧ form an adequate set as far as the propositional connectives are concerned;
and AF , EU and EX form an adequate set of temporal connectives. Given
an arbitrary CTL formula φ, we would simply pre-process φ in order to write
it in an equivalent form in terms of the adequate set of connectives, and then

3.6 Model-checking algorithms 223

Repeat. . .

AFψ1

AFψ1

AFψ1

AFψ1 AFψ1

AFψ1

AFψ1

. . . until no change.

Figure 3.24. The iteration step of the procedure for labelling states with

subformulas of the form AFψ1.

call the model-checking algorithm. Here is the algorithm:

INPUT: a CTL model M = (S,→, L) and a CTL formula φ.
OUTPUT: the set of states of M which satisfy φ.

First, change φ to the output of TRANSLATE (φ), i.e., we write φ in terms
of the connectives AF, EU, EX, ∧, ¬ and ⊥ using the equivalences given
earlier in the chapter. Next, label the states of M with the subformulas of φ
that are satisfied there, starting with the smallest subformulas and working
outwards towards φ.

Suppose ψ is a subformula of φ and states satisfying all the immediate
subformulas of ψ have already been labelled. We determine by a case analysis
which states to label with ψ. If ψ is

� ⊥: then no states are labelled with ⊥.
� p: then label s with p if p ∈ L(s).
� ψ1 ∧ ψ2: label s with ψ1 ∧ ψ2 if s is already labelled both with ψ1 and with ψ2.
� ¬ψ1: label s with ¬ψ1 if s is not already labelled with ψ1.
� AFψ1:

– If any state s is labelled with ψ1, label it with AFψ1.
– Repeat: label any state with AFψ1 if all successor states are labelled with

AFψ1, until there is no change. This step is illustrated in Figure 3.24.
� E[ψ1 U ψ2]:

– If any state s is labelled with ψ2, label it with E[ψ1 U ψ2].
– Repeat: label any state with E[ψ1 U ψ2] if it is labelled with ψ1 and at least

one of its successors is labelled with E[ψ1 U ψ2], until there is no change. This
step is illustrated in Figure 3.25.

� EXψ1: label any state with EXψ1 if one of its successors is labelled with ψ1.

224 3 Verification by model checking

ψ1
ψ1

E[ψ1 U ψ2]
E[ψ1 U ψ2]

E[ψ1 U ψ2]

Figure 3.25. The iteration step of the procedure for labelling states with

subformulas of the form E[ψ1 U ψ2].

Having performed the labelling for all the subformulas of φ (including φ

itself), we output the states which are labelled φ.
The complexity of this algorithm is O(f · V · (V + E)), where f is the

number of connectives in the formula, V is the number of states and E is
the number of transitions; the algorithm is linear in the size of the formula
and quadratic in the size of the model.

Handling EG directly Instead of using a minimal adequate set of con-
nectives, it would have been possible to write similar routines for the other
connectives. Indeed, this would probably be more efficient. The connectives
AG and EG require a slightly different approach from that for the others,
however. Here is the algorithm to deal with EGψ1 directly :

� EGψ1:
– Label all the states with EGψ1.
– If any state s is not labelled with ψ1, delete the label EGψ1.
– Repeat: delete the label EGψ1 from any state if none of its successors is

labelled with EGψ1; until there is no change.

Here, we label all the states with the subformula EGψ1 and then whittle
down this labelled set, instead of building it up from nothing as we did in
the case for EU. Actually, there is no real difference between this procedure
for EGψ and what you would do if you translated it into ¬AF¬ψ as far as
the final result is concerned.

A variant which is more efficient We can improve the efficiency of
our labelling algorithm by using a cleverer way of handling EG. Instead of
using EX, EU and AF as the adequate set, we use EX, EU and EG instead.
For EX and EU we do as before (but take care to search the model by

3.6 Model-checking algorithms 225

states satisfying ψ

� EGψ
SCC

SCC

SCC

Figure 3.26. A better way of handling EG.

backwards breadth-first search, for this ensures that we won’t have to pass
over any node twice). For the EGψ case:

� Restrict the graph to states satisfying ψ, i.e., delete all other states and their
transitions;

� Find the maximal strongly connected components (SCCs); these are maximal
regions of the state space in which every state is linked with (= has a finite path
to) every other one in that region.

� Use backwards breadth-first search on the restricted graph to find any state that
can reach an SCC; see Figure 3.26.

The complexity of this algorithm is O(f · (V + E)), i.e., linear both in the
size of the model and in the size of the formula.

Example 3.20 We applied the basic algorithm to our second model of mu-
tual exclusion with the formula E[¬c2 U c1]; see Figure 3.27. The algorithm
labels all states which satisfy c1 during phase 1 with E[¬c2 U c1]. This labels
s2 and s4. During phase 2, it labels all states which do not satisfy c2 and
have a successor state that is already labelled. This labels states s1 and s3.
During phase 3, we label s0 because it does not satisfy c2 and has a succes-
sor state (s1) which is already labelled. Thereafter, the algorithm terminates
because no additional states get labelled: all unlabelled states either satisfy
c2, or must pass through such a state to reach a labelled state.

The pseudo-code of the CTL model-checking algorithm We
present the pseudo-code for the basic labelling algorithm. The main function
SAT (for ‘satisfies’) takes as input a CTL formula. The program SAT expects
a parse tree of some CTL formula constructed by means of the grammar in
Definition 3.12. This expectation reflects an important precondition on the
correctness of the algorithm SAT. For example, the program simply would
not know what to do with an input of the form X (� ∧ EF p3), since this is
not a CTL formula.

226 3 Verification by model checking

s5

s0

0: t1n2

0: c1n2 0: t1t2

0: c1t2

2: E[¬c2 U c1]

s3

s1

s2
s6s9

s4 s7

1: E[¬c2 U c1]

1 : E[¬c2 U c1]

2 : E[¬c2 U c1]

3 : E[¬c2 U c1]

0 : n1n2

0: n1t2

0: t1t2

0: t1c2

0: n1c2

Figure 3.27. An example run of the labelling algorithm in our second

model of mutual exclusion applied to the formula E[¬c2 U c1].

The pseudo-code we write for SAT looks a bit like fragments of C or
Java code; we use functions with a keyword return that indicates which
result the function should return. We will also use natural language to
indicate the case analysis over the root node of the parse tree of φ. The
declaration local var declares some fresh variables local to the current in-
stance of the procedure in question, whereas repeat until executes the
command which follows it repeatedly, until the condition becomes true. Ad-
ditionally, we employ suggestive notation for the operations on sets, like
intersection, set complement and so forth. In reality we would need an ab-
stract data type, together with implementations of these operations, but for
now we are interested only in the mechanism in principle of the algorithm
for SAT; any (correct and efficient) implementation of sets would do and
we study such an implementation in Chapter 6. We assume that SAT has
access to all the relevant parts of the model: S, → and L. In particular,
we ignore the fact that SAT would require a description of M as input as
well. We simply assume that SAT operates directly on any such given model.
Note how SAT translates φ into an equivalent formula of the adequate set
chosen.

3.6 Model-checking algorithms 227

function SAT (φ)
/* determines the set of states satisfying φ */
begin

case
φ is � : return S

φ is ⊥ : return ∅
φ is atomic: return {s ∈ S | φ ∈ L(s)}
φ is ¬φ1 : return S − SAT (φ1)
φ is φ1 ∧ φ2 : return SAT (φ1) ∩ SAT (φ2)
φ is φ1 ∨ φ2 : return SAT (φ1) ∪ SAT (φ2)
φ is φ1 → φ2 : return SAT (¬φ1 ∨ φ2)
φ is AXφ1 : return SAT (¬EX¬φ1)
φ is EXφ1 : return SATEX(φ1)
φ is A[φ1 U φ2] : return SAT(¬(E[¬φ2 U (¬φ1 ∧ ¬φ2)] ∨ EG¬φ2))
φ is E[φ1 U φ2] : return SATEU(φ1, φ2)
φ is EFφ1 : return SAT (E(� U φ1))
φ is EGφ1 : return SAT(¬AF¬φ1)
φ is AFφ1 : return SATAF (φ1)
φ is AGφ1 : return SAT (¬EF¬φ1)

end case
end function

Figure 3.28. The function SAT. It takes a CTL formula as input and

returns the set of states satisfying the formula. It calls the functions

SATEX, SATEU and SATAF, respectively, if EX , EU or AF is the root of the

input’s parse tree.

The algorithm is presented in Figure 3.28 and its subfunctions in Fig-
ures 3.29–3.31. They use program variables X, Y , V and W which are sets
of states. The program for SAT handles the easy cases directly and passes
more complicated cases on to special procedures, which in turn might call
SAT recursively on subexpressions. These special procedures rely on imple-
mentations of the functions

pre∃(Y) = {s ∈ S | exists s′, (s→ s′ and s′ ∈ Y)}
pre∀(Y) = {s ∈ S | for all s′, (s→ s′ implies s′ ∈ Y)}.

‘Pre’ denotes travelling backwards along the transition relation. Both func-
tions compute a pre-image of a set of states. The function pre∃ (instrumental
in SATEX and SATEU) takes a subset Y of states and returns the set of states
which can make a transition into Y . The function pre∀, used in SATAF, takes

228 3 Verification by model checking

function SATEX (φ)
/* determines the set of states satisfying EXφ */
local var X,Y
begin

X := SAT (φ);
Y := pre∃(X);
return Y

end

Figure 3.29. The function SATEX. It computes the states satisfying φ by

calling SAT. Then, it looks backwards along → to find the states satisfying

EXφ.

function SATAF (φ)
/* determines the set of states satisfying AFφ */
local var X,Y
begin

X := S;
Y := SAT (φ);
repeat until X = Y

begin
X := Y ;
Y := Y ∪ pre∀(Y)

end
return Y

end

Figure 3.30. The function SATAF. It computes the states satisfying φ by

calling SAT. Then, it accumulates states satisfying AFφ in the manner

described in the labelling algorithm.

a set Y and returns the set of states which make transitions only into Y .
Observe that pre∀ can be expressed in terms of complementation and pre∃,
as follows:

pre∀(Y) = S − pre∃(S − Y) (3.8)

where we write S − Y for the set of all s ∈ S which are not in Y .
The correctness of this pseudocode and the model checking algorithm is

discussed in Section 3.7.

3.6 Model-checking algorithms 229

function SATEU (φ, ψ)
/* determines the set of states satisfying E[φ U ψ] */
local var W,X, Y
begin

W := SAT (φ);
X := S;
Y := SAT (ψ);
repeat until X = Y

begin
X := Y ;
Y := Y ∪ (W ∩ pre∃(Y))

end
return Y

end

Figure 3.31. The function SATEU. It computes the states satisfying φ by

calling SAT. Then, it accumulates states satisfying E[φ U ψ] in the manner

described in the labelling algorithm.

The ‘state explosion’ problem Although the labelling algorithm (with
the clever way of handling EG) is linear in the size of the model, unfortu-
nately the size of the model is itself more often than not exponential in the
number of variables and the number of components of the system which
execute in parallel. This means that, for example, adding a boolean variable
to your program will double the complexity of verifying a property of it.

The tendency of state spaces to become very large is known as the state
explosion problem. A lot of research has gone into finding ways of overcoming
it, including the use of:

� Efficient data structures, called ordered binary decision diagrams (OBDDs),
which represent sets of states instead of individual states. We study these in
Chapter 6 in detail. SMV is implemented using OBDDs.

� Abstraction: one may interpret a model abstractly, uniformly or for a specific
property.

� Partial order reduction: for asynchronous systems, several interleavings of com-
ponent traces may be equivalent as far as satisfaction of the formula to be checked
is concerned. This can often substantially reduce the size of the model-checking
problem.

� Induction: model-checking systems with (e.g.) large numbers of identical, or sim-
ilar, components can often be implemented by ‘induction’ on this number.

230 3 Verification by model checking

� Composition: break the verification problem down into several simpler verifica-
tion problems.

The last four issues are beyond the scope of this book, but references may
be found at the end of this chapter.

3.6.2 CTL model checking with fairness

The verification of M, s0 � φ might fail because the model M may contain
behaviour which is unrealistic, or guaranteed not to occur in the actual sys-
tem being analysed. For example, in the mutual exclusion case, we expressed
that the process prc can stay in its critical section (st=c) as long as it needs.
We modelled this by the non-deterministic assignment

next(st) :=
case

...
(st = c) : {c,n};
...

esac;

However, if we really allow process 2 to stay in its critical section as
long as it likes, then we have a path which violates the liveness constraint
AG (t1 → AF c1), since, if process 2 stays forever in its critical section, t1
can be true without c1 ever becoming true.

We would like to ignore this path, i.e., we would like to assume that the
process can stay in its critical section as long as it needs, but will eventually
exit from its critical section after some finite time.

In LTL, we could handle this by verifying a formula like FG¬c2 → φ,
where φ is the formula we actually want to verify. This whole formula asserts
that all paths which satisfy infinitely often ¬c2 also satisfy φ. However,
we cannot do this in CTL because we cannot write formulas of the form
FG¬c2 → φ in CTL. The logic CTL is not expressive enough to allow us
to pick out the ‘fair’ paths, i.e., those in which process 2 always eventually
leaves its critical section.

It is for that reason that SMV allows us to impose fairness constraints
on top of the transition system it describes. These assumptions state that
a given formula is true infinitely often along every computation path. We
call such paths fair computation paths. The presence of fairness constraints
means that, when evaluating the truth of CTL formulas in specifications,
the connectives A and E range only over fair paths.

3.6 Model-checking algorithms 231

We therefore impose the fairness constraint that !st=c be true infinitely
often. This means that, whatever state the process is in, there will be a
state in the future in which it is not in its critical section. Similar fairness
constraints were used for the Alternating Bit Protocol.

Fairness constraints of the form (where φ is a state formula)
Property φ is true infinitely often

are known as simple fairness constraints. Other types include those of the
form

If φ is true infinitely often, then ψ is also true infinitely often.

SMV can deal only with simple fairness constraints; but how does it do
that? To answer that, we now explain how we may adapt our model-checking
algorithm so that A and E are assumed to range only over fair computation
paths.

Definition 3.21 Let C def= {ψ1, ψ2, . . . , ψn} be a set of n fairness constraints.
A computation path s0 → s1 → . . . is fair with respect to these fairness
constraints iff for each i there are infinitely many j such that sj � ψi, that
is, each ψi is true infinitely often along the path. Let us write AC and EC
for the operators A and E restricted to fair paths.

For example, M, s0 � ACGφ iff φ is true in every state along all fair paths;
and similarly for ACF, ACU, etc. Notice that these operators explicitly de-
pend on the chosen set C of fairness constraints. We already know that ECU,
ECG and ECX form an adequate set; this can be shown in the same man-
ner as was done for the temporal connectives without fairness constraints
(Section 3.4.4). We also have that

EC [φ U ψ] ≡ E[φ U (ψ ∧ ECG�)]
ECXφ ≡ EX (φ ∧ ECG�).

To see this, observe that a computation path is fair iff any suffix of it is
fair. Therefore, we need only provide an algorithm for ECGφ. It is similar
to Algorithm 2 for EG, given earlier in this chapter:

� Restrict the graph to states satisfying φ; of the resulting graph, we want to know
from which states there is a fair path.

� Find the maximal strongly connected components (SCCs) of the restricted graph;
� Remove an SCC if, for some ψi, it does not contain a state satisfying ψi. The

resulting SCCs are the fair SCCs. Any state of the restricted graph that can
reach one has a fair path from it.

232 3 Verification by model checking

states satisfying φ

� EfGφ

ψ2

ψ1
ψ3

fair SCC

fair SCC

Figure 3.32. Computing the states satisfying ECGφ. A state satisfies

ECGφ iff, in the graph resulting from the restriction to states satisfying

φ, the state has a fair path from it. A fair path is one which leads to an

SCC with a cycle passing through at least one state that satisfies each

fairness constraint; in the example, C equals {ψ1, ψ2, ψ3}.

� Use backwards breadth-first search to find the states on the restricted graph that
can reach a fair SCC.

See Figure 3.32. The complexity of this algorithm is O(n · f · (V + E)), i.e.,
still linear in the size of the model and formula.

It should be noted that writing fairness conditions using SMV’s FAIR-
NESS keyword is necessary only for CTL model checking. In the case of LTL,
we can assert the fairness condition as part of the formula to be checked.
For example, if we wish to check the LTL formula ψ under the assumption
that φ is infinitely often true, we check GFφ→ ψ. This means: all paths
satisfying infinitely often φ also satisfy ψ. It is not possible to express this
in CTL. In particular, any way of adding As or Es to G Fφ→ ψ will result
in a formula with a different meaning from the intended one. For example,
AG AFφ→ ψ means that if all paths are fair then ψ holds, rather than what
was intended: ψ holds along all paths which are fair.

3.6.3 The LTL model-checking algorithm

The algorithm presented in the sections above for CTL model checking
is quite intuitive: given a system and a CTL formula, it labels states of
the system with the subformulas of the formula which are satisfied there.
The state-labelling approach is appropriate because subformulas of the for-
mula may be evaluated in states of the system. This is not the case for
LTL: subformulas of the formula must be evaluated not in states but along
paths of the system. Therefore, LTL model checking has to adopt a different
strategy.

There are several algorithms for LTL model checking described in the
literature. Although they differ in detail, nearly all of them adopt the same

3.6 Model-checking algorithms 233

basic strategy. We explain that strategy first; then, we describe some algo-
rithms in more detail.

The basic strategy Let M = (S,→, L) be a model, s ∈ S, and φ an LTL
formula. We determine whether M, s � φ, i.e., whether φ is satisfied along
all paths of M starting at s. Almost all LTL model checking algorithms
proceed along the following three steps.

1. Construct an automaton, also known as a tableau, for the formula ¬φ. The
automaton for ψ is called Aψ. Thus, we construct A¬φ. The automaton has a
notion of accepting a trace. A trace is a sequence of valuations of the proposi-
tional atoms. From a path, we can abstract its trace. The construction has the
property that for all paths π: π � ψ iff the trace of π is accepted by Aψ. In other
words, the automaton Aψ encodes precisely the traces which satisfy ψ.
Thus, the automaton A¬φ which we construct for ¬φ has the property that it
encodes all the traces satisfying ¬φ; i.e., all the traces which do not satisfy φ.

2. Combine the automaton A¬φ with the model M of the system. The combina-
tion operation results in a transition system whose paths are both paths of the
automaton and paths of the system.

3. Discover whether there is any path from a state derived from s in the combined
transition system. Such a path, if there is one, can be interpreted as a path in
M beginning at s which does not satisfy φ.
If there was no such path, then output: ‘Yes, M, s � φ.’ Otherwise, if there is
such a path, output ‘No, M, s
� φ.’ In the latter case, the counterexample can
be extracted from the path found.

Let us consider an example. The system is described by the SMV program
and its model M, shown in Figure 3.33. We consider the formula ¬(a U b).
Since it is not the case that all paths of M satisfy the formula (for example,
the path q3, q2, q2 . . . does not satisfy it) we expect the model check to
fail.

In accordance with Step 1, we construct an automaton AaUb which char-
acterises precisely the traces which satisfy a U b. (We use the fact that
¬¬(a U b) is equivalent to a U b.) Such an automaton is shown in Figure
3.34. We will look at how to construct it later; for now, we just try to un-
derstand how and why it works.

A trace t is accepted by an automaton like the one of Figure 3.34 if there
exists a path π through the automaton such that:

� π starts in an initial state (i.e. one containing φ);
� it respects the transition relation of the automaton;
� t is the trace of π; matches the corresponding state of π;

234 3 Verification by model checking

init(a) := 1;
init(b) := 0;
next(a) := case

!a : 0;
b : 1;
1 : {0,1};

esac;
next(b) := case

a & next(a) : !b;
!a : 1;
1 : {0,1};

esac;

q3

q1 q2

ab

q4

ab

ab ab

Figure 3.33. An SMV program and its model M.

a b φ

q4

a b φ

a b φ

q1

q′3

a b φ

q3

a b φ

q2

Figure 3.34. Automaton accepting precisely traces satisfying φ
def= a U b.

The transitions with no arrows can be taken in either direction. The

acceptance condition is that the path of the automaton cannot loop

indefinitely through q3.

� the path respects a certain ‘accepting condition.’ For the automaton of Fig-
ure 3.34, the accepting condition is that the path should not end q3, q3, q3 . . . ,
indefinitely.

For example, suppose t is a b, a b, a b, a b, a b, a b, a b, a b, . . . , eventually re-
peating forevermore the state a b. Then we choose the path q3, q3, q3, q4, q4,

q1, q
′
3, q

′
3 We start in q3 because the first state is a b and it is an initial

3.6 Model-checking algorithms 235

state. The next states we choose just follow the valuation of the states of
π. For example, at q1 the next valuation is a b and the transitions allow us
to choose q3 or q′3. We choose q′3, and loop there forevermore. This path
meets the conditions, and therefore the trace t is accepted. Observe that the
definition states ‘there exists a path.’ In the example above, there are also
paths which don’t meet the conditions:

� Any path beginning q3, q′3, . . . doesn’t meet the condition that we have to respect
the transition relation.

� The path q3, q3, q3, q4, q4, q1, q3, q3 . . . doesn’t meet the condition that we must
not end on a loop of q3.

These paths need not bother us, because it is sufficient to find one which
does meet the conditions in order to declare that π is accepted.

Why does the automaton of Figure 3.34 work as intended? To understand
it, observe that it has enough states to distinguish the values of the propo-
sitions – that is, a state for each of the valuations {a b, a b, a b, a b}, and in
fact two states for the valuation a b. One state for each of {a b, a b, a b} is
intuitively enough, because those valuations determine whether a U b holds.
But a U b could be false or true in a b, so we have to consider the two cases.
The presence of φ def= a U b in a state indicates that either we are still ex-
pecting φ to become true, or we have just obtained it. Whereas φ indicates
we no longer expect φ, and have not just obtained it. The transitions of the
automaton are such that the only way out of q3 is to obtain b, i.e., to move to
q2 or q4. Apart from that, the transitions are liberal, allowing any path to be
followed; each of q1, q2, q3 can transition to any valuation, and so can q3, q′3
taken together, provided we are careful to choose the right one to enter.
The acceptance condition, which allows any path except one looping indefi-
nitely on q3, guarantees that the promise of a U b to deliver b is eventually
fulfilled.

Using this automaton AaUb, we proceed to Step 2. To combine the au-
tomaton AaUb with the model of the system M shown in Figure 3.33, it is
convenient first to redraw M with two versions of q3; see Figure 3.35(left).
It is an equivalent system; all ways into q3 now non-deterministically choose
q3 or q′3, and which ever one we choose leads to the same successors. But it
allows us to superimpose it on AaUb and select the transitions common to
both, obtaining the combined system of Figure 3.35(right).

Step 3 now asks whether there is a path from q of the combined automa-
ton. As can be seen, there are two kinds of path in the combined system:
q3, (q4, q3,)∗q2, q2 . . . , and q3, q4, (q3, q4,)∗q′3, q1, q2, q2, . . . where (q3, q4)∗

denotes either the empty string or q3, q4 or q3, q4, q3, q4 etc. Thus, according

236 3 Verification by model checking

a ba b

a b

q1

a b

a b

q2

a b φa b φ

a b φ

q1

a b φ

a b φ

q2

q3

q′3

q3

q′3
q4 q4

Figure 3.35. Left: the system M of Figure 3.33, redrawn with an ex-

panded state space; right: the expanded M and AaUb combined.

to Step 3, and as we expected, ¬(a U b) is not satisfied in all paths of the
original system M.

Constructing the automaton Let us look in more detail at how the
automaton is constructed. Given an LTL formula φ, we wish to construct
an automaton Aφ such that Aφ accepts precisely those runs on which φ

holds. We assume that φ contains only the temporal connectives U and X;
recall that the other temporal connectives can be written in terms of these
two.

Define the closure C(φ) of formula φ as the set of subformulas of φ
and their complements, identifying ¬¬ψ and ψ. For example, C(a U b) =
{a, b,¬a,¬b, a U b,¬(a U b)}. The states of Aφ, denoted by q, q′ etc., are
the maximal subsets of C(φ) which satisfy the following conditions:

� For all (non-negated) ψ ∈ C(φ), either ψ ∈ q or ¬ψ ∈ q, but not both.
� ψ1 ∨ ψ2 ∈ q holds iff ψ1 ∈ q or ψ2 ∈ q, whenever ψ1 ∨ ψ2 ∈ C(φ).
� Conditions for other boolean combinations are similar.
� If ψ1 U ψ2 ∈ q, then ψ2 ∈ q or ψ1 ∈ q.
� If ¬(ψ1 U ψ2) ∈ q, then ¬ψ2 ∈ q.

Intuitively, these conditions imply that the states of Aφ are capable of saying
which subformulas of φ are true.

3.6 Model-checking algorithms 237

The initial states of Aφ are those states containing φ. For transition rela-
tion δ of Aφ we have (q, q′) ∈ δ iff all of the following conditions hold:

� if Xψ ∈ q then ψ ∈ q′;
� if ¬Xψ ∈ q then ¬ψ ∈ q′;
� If ψ1 U ψ2 ∈ q and ψ2 /∈ q then ψ1 U ψ2 ∈ q′;
� If ¬(ψ1 U ψ2) ∈ q and ψ1 ∈ q then ¬(ψ1 U ψ2) ∈ q′.

These last two conditions are justified by the recursion laws

ψ1 U ψ2 = ψ2 ∨ (ψ1 ∧ X (ψ1 U ψ2))
¬(ψ1 U ψ2) = ¬ψ2 ∧ (¬ψ1 ∨ X¬(ψ1 U ψ2)) .

In particular, they ensure that whenever some state contains ψ1 U ψ2, sub-
sequent states contain ψ1 for as long as they do not contain ψ2.

As we have defined Aφ so far, not all paths through Aφ satisfy φ. We use
additional acceptance conditions to guarantee the ‘eventualities’ ψ promised
by the formula ψ1 U ψ2, namely that Aφ cannot stay for ever in states satis-
fying ψ1 without ever obtaining ψ2. Recall that, for the automaton of Figure
3.34 for a U b, we stipulated the acceptance condition that the path through
the automaton should not end q3, q3,

The acceptance conditions of Aφ are defined so that they ensure that
every state containing some formula χ U ψ will eventually be followed by
some state containing ψ. Let χ1 U ψ1, . . . , χk U ψk be all subformulas of
this form in C(φ). We stipulate the following acceptance condition: a run
is accepted if, for every i such that 1 ≤ i ≤ k, the run has infinitely many
states satisfying ¬(χi U ψi) ∨ ψi. To understand why this condition has the
desired effect, imagine the circumstances in which it is false. Suppose we
have a run having only finitely many states satisfying ¬(χi U ψi) ∨ ψi. Let
us advance through all those finitely many states, taking the suffix of the run
none of whose states satisfies ¬(χi U ψi) ∨ ψi, i.e., all of whose states satisfy
(χi U ψi) ∧ ¬ψi. That is precisely the sort of run we want to eliminate.

If we carry out this construction on a U b, we obtain the automaton shown
in Figure 3.34. Another example is shown in Figure 3.36, for the formula
(p U q) ∨ (¬p U q). Since that formula has two U subformulas, there are two
sets specified in the acceptance condition, namely, the states satisfying p U q

and the states satisfying ¬p U q.

How LTL model checking is implemented in NuSMV In the sec-
tions above, we described an algorithm for LTL model checking. Given an
LTL formula φ and a system M and a state s of M, we may check whether
M, s � φ holds by constructing the automaton A¬φ, combining it with M,

238 3 Verification by model checking

¬(p U q),
¬(¬p U q),
¬p,¬q,¬φ

¬(p U q),
¬(¬p U q),

p U q,
¬p U q,
¬p, q, φ

p U q,
¬(¬p U q),
p,¬q, φ

p U q,
¬p U q,
p, q, φ

¬(p U q),
¬p U q,
¬p,¬q, φ

q1 q2

q3 q4

q5 q6

p,¬q,¬φ

Figure 3.36. Automaton accepting precisely traces satisfying φ
def= (p U

q) ∨ (¬p U q). The transitions with no arrows can be taken in either direc-

tion. The acceptance condition asserts that every run must pass infinitely

often through the set {q1, q3, q4, q5, q6}, and also the set {q1, q2, q3, q5, q6}.

and checking whether there is a path of the resulting system which satisfies
the acceptance condition of A¬φ.

It is possible to implement the check for such a path in terms of CTL
model checking, and this is in fact what NuSMV does. The combined system
M×A¬φ is represented as the system to be model checked in NuSMV,
and the formula to be checked is simply EG�. Thus, we ask the question:
does the combined system have a path. The acceptance conditions of A¬φ
are represented as implicit fairness conditions for the CTL model-checking
procedure. Explicitly, this amounts to asserting ‘FAIRNESS ¬(χ U ψ) ∨ ψ’
for each formula χ U ψ occurring in C(φ).

3.7 The fixed-point characterisation of CTL

On page 227, we presented an algorithm which, given a CTL formula φ and
a model M = (S,→, L), computes the set of states s ∈ S satisfying φ. We
write this set as [[φ]]. The algorithm works recursively on the structure of
φ. For formulas φ of height 1 (⊥, � or p), [[φ]] is computed directly. Other

3.7 The fixed-point characterisation of CTL 239

formulas are composed of smaller subformulas combined by a connective of
CTL. For example, if φ is ψ1 ∨ ψ2, then the algorithm computes the sets
[[ψ1]] and [[ψ2]] and combines them in a certain way (in this case, by taking
the union) in order to obtain [[ψ1 ∨ ψ2]].

The more interesting cases arise when we deal with a formula such as
EXψ, involving a temporal operator. The algorithm computes the set [[ψ]]
and then computes the set of all states which have a transition to a state in
[[ψ]]. This is in accord with the semantics of EXψ: M, s � EXψ iff there is
a state s′ with s→ s′ and M, s′ � ψ.

For most of these logical operators, we may easily continue this discussion
to see that the algorithms work just as expected. However, the cases EU,
AF and EG (where we needed to iterate a certain labelling policy until it
stabilised) are not so obvious to reason about. The topic of this section is to
develop the semantic insights into these operators that allow us to provide a
complete proof for their termination and correctness. Inspecting the pseudo-
code in Figure 3.28, we see that most of these clauses just do the obvious
and correct thing according to the semantics of CTL. For example, try out
what SAT does when you call it with φ1 → φ2.

Our aim in this section is to prove the termination and correctness
of SATAF and SATEU. In fact, we will also write a procedure SATEG and
prove its termination and correctness1. The procedure SATEG is given in
Figure 3.37 and is based on the intuitions given in Section 3.6.1: note how
deleting the label if none of the successor states is labelled is coded as
intersecting the labelled set with the set of states which have a labelled
successor.

The semantics of EGφ says that s0 � EGφ holds iff there exists a com-
putation path s0 → s1 → s2 → . . . such that si � φ holds for all i ≥ 0. We
could instead express it as follows: EGφ holds if φ holds and EGφ holds
in one of the successor states to the current state. This suggests the equiv-
alence EGφ ≡ φ ∧ EX EGφ which can easily be proved from the semantic
definitions of the connectives.

Observing that [[EXψ]] = pre∃([[ψ]]) we see that the equivalence above
can be written as [[EGφ]] = [[φ]] ∩ pre∃([[EGφ]]). This does not look like a
very promising way of calculating EGφ, because we need to know EGφ in
order to work out the right-hand side. Fortunately, there is a way around
this apparent circularity, known as computing fixed points, and that is the
subject of this section.

1 Section 3.6.1 handles EGφ by translating it into ¬AF¬φ, but we already noted in Section 3.6.1
that EG could be handled directly.

240 3 Verification by model checking

function SATEG (φ)
/* determines the set of states satisfying EGφ */
local var X,Y
begin

Y := SAT (φ);
X := ∅;
repeat until X = Y

begin
X := Y ;
Y := Y ∩ pre∃(Y)

end
return Y

end

Figure 3.37. The pseudo-code for SATEG.

3.7.1 Monotone functions

Definition 3.22 Let S be a set of states and F : P(S) → P(S) a function
on the power set of S.

1. We say that F is monotone iff X ⊆ Y implies F (X) ⊆ F (Y) for all subsets X
and Y of S.

2. A subset X of S is called a fixed point of F iff F (X) = X.

For an example, let S def= {s0, s1} and F (Y) def= Y ∪ {s0} for all subsets Y
of S. Since Y ⊆ Y ′ implies Y ∪ {s0} ⊆ Y ′ ∪ {s0}, we see that F is monotone.
The fixed points of F are all subsets of S containing s0. Thus, F has two
fixed points, the sets {s0} and {s0, s1}. Notice that F has a least (= {s0})
and a greatest (= {s0, s1}) fixed point.

An example of a function G : P(S) → P(S), which is not monotone, is
given by

G(Y) def= if Y = {s0} then {s1} else {s0}.
So G maps {s0} to {s1} and all other sets to {s0}. The function G is
not monotone since {s0} ⊆ {s0, s1} but G({s0}) = {s1} is not a subset of
G({s0, s1}) = {s0}. Note that G has no fixed points whatsoever.

The reasons for exploring monotone functions on P(S) in the context of
proving the correctness of SAT are:

1. that monotone functions always have a least and a greatest fixed point;
2. that the meanings of EG, AF and EU can be expressed via greatest, respectively

least, fixed points of monotone functions on P(S);

3.7 The fixed-point characterisation of CTL 241

3. that these fixed-points can be easily computed, and;
4. that the procedures SATEU and SATAF code up such fixed-point computations,

and are correct by item 2.

Notation 3.23 F i(X) means

F (F (. . . F︸ ︷︷ ︸
i times

(X) . . .))

Thus, the function F i is just ‘F applied i many times.’

For example, for the function F (Y) def= Y ∪ {s0}, we obtain F 2(Y) =
F (F (Y)) = (Y ∪ {s0}) ∪ {s0} = Y ∪ {s0} = F (Y). In this case, F 2 = F and
therefore F i = F for all i ≥ 1. It is not always the case that the sequence of
functions (F 1, F 2, F 3, . . .) stabilises in such a way. For example, this won’t
happen for the function G defined above (see Exercise 1(d) on page 253).
The following fact is a special case of a fundamental insight, often referred
to as the Knaster–Tarski Theorem.

Theorem 3.24 Let S be a set {s0, s1, . . . , sn} with n+ 1 elements. If
F : P(S) → P(S) is a monotone function, then Fn+1(∅) is the least fixed
point of F and Fn+1(S) is the greatest fixed point of F .

PROOF: Since ∅ ⊆ F (∅), we get F (∅) ⊆ F (F (∅)), i.e., F 1(∅) ⊆ F 2(∅), for F
is monotone. We can now use mathematical induction to show that

F 1(∅) ⊆ F 2(∅) ⊆ F 3(∅) ⊆ . . . ⊆ F i(∅)
for all i ≥ 1. In particular, taking i def= n+ 1, we claim that one of the expres-
sions F k(∅) above is already a fixed point of F . Otherwise, F 1(∅) needs to
contain at least one element (for then ∅
= F (∅)). By the same token, F 2(∅)
needs to have at least two elements since it must be bigger than F 1(∅). Con-
tinuing this argument, we see that Fn+2(∅) would have to contain at least
n+ 2 many elements. The latter is impossible since S has only n+ 1 ele-
ments. Therefore, F (F k(∅)) = F k(∅) for some 0 ≤ k ≤ n+ 1, which readily
implies that Fn+1(∅) is a fixed point of F as well.

Now suppose that X is another fixed point of F . We need to show that
Fn+1(∅) is a subset of X; but, since ∅ ⊆ X, we conclude F (∅) ⊆ F (X) =
X, for F is monotone and X a fixed point of F . By induction, we obtain
F i(∅) ⊆ X for all i ≥ 0. So, for i def= n+ 1, we get Fn+1(∅) ⊆ X.

The proof of the statements about the greatest fixed point is dual to the
one above. Simply replace ⊆ by ⊇, ∅ by S and ‘bigger’ by ‘smaller.’ �

242 3 Verification by model checking

This theorem about the existence of least and greatest fixed points of
monotone functions F : P(S) → P(S) not only asserted the existence of
such fixed points; it also provided a recipe for computing them, and cor-
rectly so. For example, in computing the least fixed point of F , all we have
to do is apply F to the empty set ∅ and keep applying F to the result un-
til the latter becomes invariant under the application of F . The theorem
above further ensures that this process is guaranteed to terminate. More-
over, we can specify an upper bound n+ 1 to the worst-case number of
iterations necessary for reaching this fixed point, assuming that S has n+ 1
elements.

3.7.2 The correctness of SATEG
We saw at the end of the last section that [[EGφ]] = [[φ]] ∩ pre∃([[EGφ]]). This
implies that EGφ is a fixed point of the function F (X) = [[φ]] ∩ pre∃(X). In
fact, F is monotone, EGφ is its greatest fixed point and therefore EGφ can
be computed using Theorem 3.24.

Theorem 3.25 Let F be as defined above and let S have n+ 1 elements.
Then F is monotone, [[EGφ]] is the greatest fixed point of F , and [[EGφ]] =
Fn+1(S).

PROOF:

1. In order to show that F is monotone, we take any two subsets X and Y of S
such that X ⊆ Y and we need to show that F (X) is a subset of F (Y). Given s0
such that there is some s1 ∈ X with s0 → s1, we certainly have s0 → s1, where
s1 ∈ Y , for X is a subset of Y . Thus, we showed pre∃(X) ⊆ pre∃(Y) from which
we readily conclude that F (X) = [[φ]] ∩ pre∃(X) ⊆ [[φ]] ∩ pre∃(Y) = F (Y).

2. We have already seen that [[EGφ]] is a fixed point of F . To show that it is the
greatest fixed point, it suffices to show here that any set X with F (X) = X has
to be contained in [[EGφ]]. So let s0 be an element of such a fixed point X. We
need to show that s0 is in [[EGφ]] as well. For that we use the fact that

s0 ∈ X = F (X) = [[φ]] ∩ pre∃(X)

to infer that s0 ∈ [[φ]] and s0 → s1 for some s1 ∈ X; but, since s1 is in X,
we may apply that same argument to s1 ∈ X = F (X) = [[φ]] ∩ pre∃(X) and we
get s1 ∈ [[φ]] and s1 → s2 for some s2 ∈ X. By mathematical induction, we can
therefore construct an infinite path s0 → s1 → · · · → sn → sn+1 → . . . such that
si ∈ [[φ]] for all i ≥ 0. By the definition of [[EGφ]], this entails s0 ∈ [[EGφ]].

3. The last item is now immediately accessible from the previous one and Theo-
rem 3.24. �

3.7 The fixed-point characterisation of CTL 243

Now we can see that the procedure SATEG is correctly coded and termi-
nates. First, note that the line Y := Y ∩ pre∃(Y) in the procedure SATEG
(Figure 3.37) could be changed to Y := SAT(φ) ∩ pre∃(Y) without changing
the effect of the procedure. To see this, note that the first time round the
loop, Y is SAT(φ); and in subsequent loops, Y ⊆ SAT(φ), so it doesn’t matter
whether we intersect with Y or SAT(φ)2. With the change, it is clear that
SATEG is calculating the greatest fixed point of F ; therefore its correctness
follows from Theorem 3.25.

3.7.3 The correctness of SATEU
Proving the correctness of SATEU is similar. We start by noting the equiv-
alence E[φ U ψ] ≡ ψ ∨ (φ ∧ EX E[φ U ψ]) and we write it as [[E[φ U ψ]]] =
[[ψ]] ∪ ([[φ]] ∩ pre∃[[E[φ U ψ]]]). That tells us that [[E[φ U ψ]]] is a fixed point
of the function G(X) = [[ψ]] ∪ ([[φ]] ∩ pre∃(X)). As before, we can prove that
this function is monotone. It turns out that [[E[φ U ψ]]] is its least fixed
point and that the function SATEU is actually computing it in the manner of
Theorem 3.24.

Theorem 3.26 Let G be defined as above and let S have n+ 1 elements.
Then G is monotone, [[E(φ U ψ)]] is the least fixed point of G, and we have
[[E(φ U ψ)]] = Gn+1(∅).

2 If you are sceptical, try computing the values Y0, Y1, Y2, . . . , where Yi represents the value of Y
after i iterations round the loop. The program before the change computes as follows:

Y0 = SAT(φ)
Y1 = Y0 ∩ pre∃(Y0)
Y2 = Y1 ∩ pre∃(Y1)

= Y0 ∩ pre∃(Y0) ∩ pre∃(Y0 ∩ pre∃(Y0))
= Y0 ∩ pre∃(Y0 ∩ pre∃(Y0)).

The last of these equalities follows from the monotonicity of pre∃.

Y3 = Y2 ∩ pre∃(Y2)
= Y0 ∩ pre∃(Y0 ∩ pre∃(Y0)) ∩ pre∃(Y0 ∩ pre∃(Y0 ∩ pre∃(Y0)))
= Y0 ∩ pre∃(Y0 ∩ pre∃(Y0 ∩ pre∃(Y0))).

Again the last one follows by monotonicity. Now look at what the program does after the change:

Y0 = SAT(φ)
Y1 = SAT(φ) ∩ pre∃(Y0)

= Y0 ∩ pre∃(Y0)
Y2 = Y0 ∩ pre∃(Y1)
Y3 = Y0 ∩ pre∃(Y1)

= Y0 ∩ pre∃(Y0 ∩ pre∃(Y0)).

A formal proof would follow by induction on i.

244 3 Verification by model checking

PROOF:

1. Again, we need to show that X ⊆ Y implies G(X) ⊆ G(Y); but that is essen-
tially the same argument as for F , since the function which sends X to pre∃(X)
is monotone and all that G now does is to perform the intersection and union
of that set with constant sets [[φ]] and [[ψ]].

2. If S has n+ 1 elements, then the least fixed point of G equals Gn+1(∅) by
Theorem 3.24. Therefore it suffices to show that this set equals [[E(φ U ψ)]].
Simply observe what kind of states we obtain by iterating G on the empty set
∅: G1(∅) = [[ψ]] ∪ ([[φ]] ∩ pre∃([[∅]])) = [[ψ]] ∪ ([[φ]] ∩ ∅) = [[ψ]] ∪ ∅ = [[ψ]], which are
all states s0 ∈ [[E(φ U ψ)]], where we chose i = 0 according to the definition of
Until. Now,

G2(∅) = [[ψ]] ∪ ([[φ]] ∩ pre∃(G
1(∅)))

tells us that the elements of G2(∅) are all those s0 ∈ [[E(φ U ψ)]] where we chose
i ≤ 1. By mathematical induction, we see that Gk+1(∅) is the set of all states
s0 for which we chose i ≤ k to secure s0 ∈ [[E(φ U ψ)]]. Since this holds for all
k, we see that [[E(φ U ψ)]] is nothing but the union of all sets Gk+1(∅) with
k ≥ 0; but, since Gn+1(∅) is a fixed point of G, we see that this union is just
Gn+1(∅). �

The correctness of the coding of SATEU follows similarly to that of
SATEG. We change the line Y := Y ∪ (W ∩ pre∃(Y)) into Y := SAT(ψ) ∪
(W ∩ pre∃(Y)) and observe that this does not change the result of the pro-
cedure, because the first time round the loop, Y is SAT(ψ); and, since Y is
always increasing, it makes no difference whether we perform a union with
Y or with SAT(ψ). Having made that change, it is then clear that SATEU is
just computing the least fixed point of G using Theorem 3.24.

We illustrate these results about the functions F and G above
through an example. Consider the system in Figure 3.38. We begin
by computing the set [[EF p]]. By the definition of EF this is just
[[E(� U p)]]. So we have φ1

def= � and φ2
def= p. From Figure 3.38, we ob-

tain [[p]] = {s3} and of course [[�]] = S. Thus, the function G above
equals G(X) = {s3} ∪ pre∃(X). Since [[E(� U p)]] equals the least fixed
point of G, we need to iterate G on ∅ until this process stabilises.
First, G1(∅) = {s3} ∪ pre∃(∅) = {s3}. Second, G2(∅) = G(G1(∅)) = {s3} ∪
pre∃({s3}) = {s1, s3}. Third, G3(∅) = G(G2(∅)) = {s3} ∪ pre∃({s1, s3}) =
{s0, s1, s2, s3}. Fourth, G4(∅) = G(G3(∅)) = {s3} ∪ pre∃({s0, s1, s2, s3}) =
{s0, s1, s2, s3}. Therefore, {s0, s1, s2, s3} is the least fixed point of G,
which equals [[E(� U p)]] by Theorem 3.20. But then [[E(� U p)]] =
[[EF p]].

3.8 Exercises 245

s0

s1

s4

q

q

ps3

s2

Figure 3.38. A system for which we compute invariants.

The other example we study is the computation of the set [[EG q]]. By
Theorem 3.25, that set is the greatest fixed point of the function F above,
where φ def= q. From Figure 3.38 we see that [[q]] = {s0, s4} and so F (X) =
[[q]] ∩ pre∃(X) = {s0, s4} ∩ pre∃(X). Since [[EG q]] equals the greatest fixed
point of F , we need to iterate F on S until this process stabilises. First,
F 1(S) = {s0, s4} ∩ pre∃(S) = {s0, s4} ∩ S since every s has some s′ with s→
s′. Thus, F 1(S) = {s0, s4}.

Second, F 2(S) = F (F 1(S)) = {s0, s4} ∩ pre∃({s0, s4}) = {s0, s4}. There-
fore, {s0, s4} is the greatest fixed point of F , which equals [[EG q]] by Theo-
rem 3.25.

3.8 Exercises

Exercises 3.1
1. Read Section 2.7 in case you have not yet done so and classify Alloy and its

constraint analyser according to the classification criteria for formal methods
proposed on page 172.

2. Visit and browse the websites3 and4 to find formal methods that interest you for
whatever reason. Then classify them according to the criteria from page 172.

Exercises 3.2
1. Draw parse trees for the LTL formulas:

(a) F p ∧ G q → p W r

(b) F (p→ G r) ∨ ¬q U p

(c) p W (q W r)
(d) G F p→ F (q ∨ s)

3 www.afm.sbu.ac.uk
4 www.cs.indiana.edu/formal-methods-education/

246 3 Verification by model checking

q3

q1 q2

ab

q4

ab

ab ab

Figure 3.39. A model M.

2. Consider the system of Figure 3.39. For each of the formulas φ:
(a) G a

(b) a U b

(c) a U X (a ∧ ¬b)
(d) X¬b ∧ G (¬a ∨ ¬b)
(e) X (a ∧ b) ∧ F (¬a ∧ ¬b)

(i) Find a path from the initial state q3 which satisfies φ.
(ii) Determine whether M, q3 � φ.

3. Working from the clauses of Definition 3.1 (page 175), prove the equivalences:

φ U ψ ≡ φ W ψ ∧ Fψ

φ W ψ ≡ φ U ψ ∨ Gφ

φ W ψ ≡ ψ R (φ ∨ ψ)

φ R ψ ≡ ψ W (φ ∧ ψ) .

4. Prove that φ U ψ ≡ ψ R (φ ∨ ψ) ∧ Fψ.
5. List all subformulas of the LTL formula ¬p U (F r ∨G¬q → q W ¬r).
6. ‘Morally’ there ought to be a dual for W. Work out what it might mean, and

then pick a symbol based on the first letter of the meaning.
7. Prove that for all paths π of all models, π � φ W ψ ∧ Fψ implies π � φ U ψ.

That is, prove the remaining half of equivalence (3.2) on page 185.
8. Recall the algorithm NNF on page 62 which computes the negation normal form

of propositional logic formulas. Extend this algorithm to LTL: you need to add
program clauses for the additional connectives X, F, G and U, R and W; these
clauses have to animate the semantic equivalences that we presented in this
section.

3.8 Exercises 247

Exercises 3.3
1. Consider the model in Figure 3.9 (page 193).

(a)* Verify that G(req -> F busy) holds in all initial states.
(b) Does ¬(req U ¬busy) hold in all initial states of that model?
(c) NuSMV has the capability of referring to the next value of a declared vari-

able v by writing next(v). Consider the model obtained from Figure 3.9
by removing the self-loop on state !req & busy. Use the NuSMV feature
next(...) to code that modified model as an NuSMV program with the
specification G(req -> F busy). Then run it.

2. Verify Remark 3.11 from page 190.
3.* Draw the transition system described by the ABP program.

Remarks: There are 28 reachable states of the ABP program. (Looking at the
program, you can see that the state is described by nine boolean variables, namely
S.st, S.message1, S.message2, R.st, R.ack, R.expected, msg chan.output1,
msg chan.output2 and finally ack chan.output. Therefore, there are 29 = 512
states in total. However, only 28 of them can be reached from the initial state
by following a finite path.)

If you abstract away from the contents of the message (e.g., by setting
S.message1 and msg chan.output1 to be constant 0), then there are only 12
reachable states. This is what you are asked to draw.

Exercises 3.4
1. Write the parse trees for the following CTL formulas:

(a)* EG r

(b)* AG (q → EG r)
(c)* A[p U EF r]
(d)* EF EG p→ AF r, recall Convention 3.13
(e) A[p U A[q U r]]
(f) E[A[p U q] U r]
(g) AG (p→ A[p U (¬p ∧ A[¬p U q])]).

2. Explain why the following are not well-formed CTL formulas:
(a)* F G r

(b) XX r

(c) A¬G¬p
(d) F [r U q]
(e) EX X r

(f)* AEF r
(g)* AF [(r U q) ∧ (p U r)].

3. State which of the strings below are well-formed CTL formulas. For those which
are well-formed, draw the parse tree. For those which are not well-formed,
explain why not.

248 3 Verification by model checking

r

p, q

q, r

s3p, t, rs1

s2

s0

Figure 3.40. A model with four states.

(a) ¬(¬p) ∨ (r ∧ s)
(b) X q

(c)* ¬AX q

(d) p U (AX⊥)
(e)* E[(AX q) U (¬(¬p) ∨ (� ∧ s))]
(f)* (F r) ∧ (AG q)
(g) ¬(AG q) ∨ (EG q).

4.* List all subformulas of the formula AG (p→ A[p U (¬p ∧ A[¬p U q])]).
5. Does E[req U ¬busy] hold in all initial states of the model in Figure 3.9 on

page 193?
6. Consider the system M in Figure 3.40.

(a) Beginning from state s0, unwind this system into an infinite tree, and draw
all computation paths up to length 4 (= the first four layers of that tree).

(b) Determine whether M, s0 � φ and M, s2 � φ hold and justify your answer,
where φ is the LTL or CTL formula:

(i)* ¬p→ r

(ii) F t
(iii)* ¬EG r

(iv) E (t U q)
(v) F q
(vi) EF q

(vii) EG r

(viii) G (r ∨ q).
7. Let M = (S,→, L) be any model for CTL and let [[φ]] denote the set of all s ∈ S

such that M, s � φ. Prove the following set identities by inspecting the clauses
of Definition 3.15 from page 211.
(a)* [[�]] = S,
(b) [[⊥]] = ∅

3.8 Exercises 249

r

p, q q, r

p, t s2

s3

s1

s0

Figure 3.41. Another model with four states.

(c) [[¬φ]] = S − [[φ]],
(d) [[φ1 ∧ φ2]] = [[φ1]] ∩ [[φ2]]
(e) [[φ1 ∨ φ2]] = [[φ1]] ∪ [[φ2]]
(f)* [[φ1 → φ2]] = (S − [[φ1]]) ∪ [[φ2]]
(g)* [[AXφ]] = S − [[EX¬φ]]
(h) [[A(φ2 U φ2)]] = [[¬(E(¬φ1 U (¬φ1 ∧ ¬φ2)) ∨ EG¬φ2)]].

8. Consider the model M in Figure 3.41. Check whether M, s0 � φ and M, s2 � φ
hold for the CTL formulas φ:
(a) AF q
(b) AG (EF (p ∨ r))
(c) EX (EX r)
(d) AG (AF q).

9.* The meaning of the temporal operators F, G and U in LTL and AU, EU, AG,
EG, AF and EF in CTL was defined to be such that ‘the present includes the
future.’ For example, EF p is true for a state if p is true for that state already.
Often one would like corresponding operators such that the future excludes the
present. Use suitable connectives of the grammar on page 208 to define such
(six) modified connectives as derived operators in CTL.

10. Which of the following pairs of CTL formulas are equivalent? For those which
are not, exhibit a model of one of the pair which is not a model of the
other:
(a) EFφ and EGφ

(b)* EFφ ∨ EFψ and EF (φ ∨ ψ)
(c)* AFφ ∨ AFψ and AF (φ ∨ ψ)
(d) AF¬φ and ¬EGφ

(e)* EF¬φ and ¬AFφ
(f) A[φ1 U A[φ2 U φ3]] and A[A[φ1 U φ2] U φ3], hint: it might make it simpler

if you think first about models that have just one path
(g) � and AGφ→ EGφ

(h)* � and EGφ→ AGφ.
11. Find operators to replace the ?, to make the following equivalences:

250 3 Verification by model checking

(a)* AG (φ ∧ ψ) ≡ AGφ ? AGψ

(b) EF¬φ ≡ ¬??φ
12. State explicitly the meaning of the temporal connectives AR etc., as defined on

page 217.
13. Prove the equivalences (3.6) on page 216.
14.* Write pseudo-code for a recursive function TRANSLATE which takes as input

an arbitrary CTL formula φ and returns as output an equivalent CTL formula
ψ whose only operators are among the set {⊥,¬,∧,AF ,EU ,EX }.

Exercises 3.5
1. Express the following properties in CTL and LTL whenever possible. If neither

is possible, try to express the property in CTL*:
(a)* Whenever p is followed by q (after finitely many steps), then the system

enters an ‘interval’ in which no r occurs until t.
(b) Event p precedes s and t on all computation paths. (You may find it easier

to code the negation of that specification first.)
(c) After p, q is never true. (Where this constraint is meant to apply on all

computation paths.)
(d) Between the events q and r, event p is never true.
(e) Transitions to states satisfying p occur at most twice.
(f)* Property p is true for every second state along a path.

2. Explain in detail why the LTL and CTL formulas for the practical specification
patterns of pages 183 and 215 capture the stated ‘informal’ properties expressed
in plain English.

3. Consider the set of LTL/CTL formulas F = {F p→ F q,AF p→ AF q,AG (p→
AF q)}.
(a) Is there a model such that all formulas hold in it?
(b) For each φ ∈ F , is there a model such that φ is the only formula in F satisfied

in that model?
(c) Find a model in which no formula of F holds.

4. Consider the CTL formula AG (p→ AF (s ∧ AX(AF t))). Explain what exactly
it expresses in terms of the order of occurrence of events p, s and t.

5. Extend the algorithm NNF from page 62 which computes the negation normal
form of propositional logic formulas to CTL*. Since CTL* is defined in terms
of two syntactic categories (state formulas and path formulas), this requires two
separate versions of NNF which call each other in a way that is reflected by the
syntax of CTL* given on page 218.

6. Find a transition system which distinguishes the following pairs of CTL* formu-
las, i.e., show that they are not equivalent:
(a) AF G p and AF AG p

(b)* AG F p and AG EF p
(c) A[(p U r) ∨ (q U r)] and A[(p ∨ q) U r)]

3.8 Exercises 251

(d)* A[X p ∨ X X p] and AX p ∨ AX AX p

(e) E[G F p] and EG EF p.
7. The translation from CTL with boolean combinations of path formulas to plain

CTL introduced in Section 3.5.1 is not complete. Invent CTL equivalents for:
(a)* E[F p ∧ (q U r)]
(b)* E[F p ∧ G q].
In this way, we have dealt with all formulas of the form E[φ ∧ ψ]. Formulas of the
form E[φ ∨ ψ] can be rewritten as E[φ] ∨ E[ψ] and A[φ] can be written ¬E[¬φ].
Use this translation to write the following in CTL:
(c) E[(p U q) ∧ F p]
(d)* A[(p U q) ∧ G p]
(e)* A[F p→ F q].

8. The aim of this exercise is to demonstrate the expansion given for AW at the
end of the last section, i.e., A[p W q] ≡ ¬E[¬q U ¬(p ∨ q)].
(a) Show that the following LTL formulas are valid (i.e., true in any state of any

model):
(i) ¬q U (¬p ∧ ¬q) → ¬G p

(ii) G¬q ∧ F¬p→ ¬q U (¬p ∧ ¬q).
(b) Expand ¬((p U q) ∨ G p) using de Morgan rules and the LTL equivalence

¬(φ U ψ) ≡ (¬ψ U (¬φ ∧ ¬ψ)) ∨ ¬Fψ.
(c) Using your expansion and the facts (i) and (ii) above, show ¬((p U q) ∨

G p) ≡ ¬q U ¬(p ∧ q) and hence show that the desired expansion of AW
above is correct.

Exercises 3.6
1.* Verify φ1 to φ4 for the transition system given in Figure 3.11 on page 198. Which

of them require the fairness constraints of the SMV program in Figure 3.10?
2. Try to write a CTL formula that enforces non-blocking and no-strict-sequencing

at the same time, for the SMV program in Figure 3.10 (page 196).
3.* Apply the labelling algorithm to check the formulas φ1, φ2, φ3 and φ4 of the

mutual exclusion model in Figure 3.7 (page 188).
4. Apply the labelling algorithm to check the formulas φ1, φ2, φ3 and φ4 of the

mutual exclusion model in Figure 3.8 (page 191).
5. Prove that (3.8) on page 228 holds in all models. Does your proof require that

for every state s there is some state s′ with s→ s′?
6. Inspecting the definition of the labelling algorithm, explain what happens if you

perform it on the formula p ∧ ¬p (in any state, in any model).
7. Modify the pseudo-code for SAT on page 227 by writing a special procedure for

AGψ1, without rewriting it in terms of other formulas5.

5 Question: will your routine be more like the routine for AF, or more like that for EG on page 224?
Why?

252 3 Verification by model checking

8.* Write the pseudo-code for SATEG, based on the description in terms of deleting
labels given in Section 3.6.1.

9.* For mutual exclusion, draw a transition system which forces the two processes
to enter their critical section in strict sequence and show that φ4 is false of its
initial state.

10. Use the definition of � between states and CTL formulas to explain why s �
AG AFφ means that φ is true infinitely often along every path starting at s.

11.* Show that a CTL formula φ is true on infinitely many states of a computa-
tion path s0 → s1 → s2 → . . . iff for all n ≥ 0 there is some m ≥ n such that
sm � φ.

12. Run the NuSMV system on some examples. Try commenting out, or deleting,
some of the fairness constraints, if applicable, and see the counter examples
NuSMV generates. NuSMV is very easy to run.

13. In the one-bit channel, there are two fairness constraints. We could have written
this as a single one, inserting ‘&’ between running and the long formula, or we
could have separated the long formula into two and made it into a total of three
fairness constraints.
In general, what is the difference between the single fairness constraint φ1 ∧ φ2 ∧
· · · ∧ φn and the n fairness constraints φ1, φ2, . . . , φn? Write an SMV program
with a fairness constraint a & b which is not equivalent to the two fairness
constraints a and b. (You can actually do it in four lines of SMV.)

14. Explain the construction of formula φ4, used to express that the processes need
not enter their critical section in strict sequence. Does it rely on the fact that
the safety property φ1 holds?

15.* Compute the ECG� labels for Figure 3.11, given the fairness constraints of the
code in Figure 3.10 on page 196.

Exercises 3.7
1. Consider the functions

H1,H2,H3 : P({1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) → P({1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
defined by

H1(Y) def= Y − {1, 4, 7}
H2(Y) def= {2, 5, 9} − Y

H3(Y) def= {1, 2, 3, 4, 5} ∩ ({2, 4, 8} ∪ Y)

for all Y ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.
(a)* Which of these functions are monotone; which ones aren’t? Justify your an-

swer in each case.
(b)* Compute the least and greatest fixed points of H3 using the iterations Hi

3

with i = 1, 2, . . . and Theorem 3.24.

3.8 Exercises 253

q

pqq

Figure 3.42. Another system for which we compute invariants.

(c) Does H2 have any fixed points?
(d) Recall G : P({s0, s1}) → P({s0, s1}) with

G(Y) def= if Y = {s0} then {s1} else {s0} .

Use mathematical induction to show that Gi equals G for all odd numbers
i ≥ 1. What does Gi look like for even numbers i?

2.* Let A and B be two subsets of S and let F : P(S) → P(S) be a monotone
function. Show that:
(a) F1 : P(S) → P(S) with F1(Y) def= A ∩ F (Y) is monotone;
(b) F2 : P(S) → P(S) with F2(Y) def= A ∪ (B ∩ F (Y)) is monotone.

3. Use Theorems 3.25 and 3.26 to compute the following sets (the underlying model
is in Figure 3.42):
(a) [[EF p]]
(b) [[EG q]].

4. Using the function F (X) = [[φ]] ∪ pre∀(X) prove that [[AFφ]] is the least fixed
point of F . Hence argue that the procedure SATAF is correct and terminates.

5.* One may also compute AGφ directly as a fixed point. Consider the function
H : P(S) → P(S) with H(X) = [[φ]] ∩ pre∀(X). Show that H is monotone and
that [[AGφ]] is the greatest fixed point of H. Use that insight to write a procedure
SATAG.

6. Similarly, one may compute A[φ1 U φ2] directly as a fixed point, using
K : P(S) → P(S), where K(X) = [[φ2]] ∪ ([[φ1]] ∩ pre∀(X)). Show that K is
monotone and that [[A[φ1 U φ2]]] is the least fixed point of K. Use that insight
to write a procedure SATAU. Can you use that routine to handle all calls of the
form AFφ as well?

7. Prove that [[A[φ1 U φ2]]] = [[φ2 ∨ (φ1 ∧ AX(A[φ1 U φ2]))]].
8. Prove that [[AGφ]] = [[φ ∧ AX (AGφ)]].
9. Show that the repeat-statements in the code for SATEU and SATEG always termi-

nate. Use this fact to reason informally that the main program SAT terminates
for all valid CTL formulas φ. Note that some subclauses, like the one for AU,
call SAT recursively and with a more complex formula. Why does this not affect
termination?

254 3 Verification by model checking

3.9 Bibliographic notes

Temporal logic was invented by the philosopher A. Prior in the 1960s; his
logic was similar to what we now call LTL. The first use of temporal logic for
reasoning about concurrent programs was by A. Pnueli [Pnu81]. The logic
CTL was invented by E. Clarke and E. A. Emerson (during the early 1980s);
and CTL* was invented by E. A. Emerson and J. Halpern (in 1986) to unify
CTL and LTL.

CTL model checking was invented by E. Clarke and E. A. Emerson [CE81]
and by J. Quielle and J. Sifakis [QS81]. The technique we described for LTL
model checking was invented by M. Vardi and P. Wolper [VW84]. Surveys
of some of these ideas can be found in [CGL93] and [CGP99]. The theorem
about adequate sets of CTL connectives is proved in [Mar01].

The original SMV system was written by K. McMillan [McM93] and is
available with source code from Carnegie Mellon University6. NuSMV7 is a
reimplementation, developed in Trento by A. Cimatti, and M. Roveri and is
aimed at being customisable and extensible. Extensive documentation about
NuSMV can be found at that site. NuSMV supports essentially the same
system description language as CMU SMV, but it has an improved user in-
terface and a greater variety of algorithms. For example, whereas CMU SMV
checks only CTL specification, NuSMV supports LTL and CTL. NuSMV im-
plements bounded model checking [BCCZ99]. Cadence SMV8 is an entirely
new model checker focused on compositional systems and abstraction as
ways of addressing the state explosion problem. It was also developed by
K. McMillan and its description language resembles but much extends the
original SMV.

A website which gathers frequently used specification patterns in various
frameworks (such as CTL, LTL and regular expressions) is maintained by
M. Dwyer, G. Avrunin, J. Corbett and L. Dillon9.

Current research in model checking includes attempts to exploit abstrac-
tions, symmetries and compositionality [CGL94, Lon83, Dam96] in order to
reduce the impact of the state explosion problem.

The model checker Spin, which is geared towards asynchronous systems
and is based on the temporal logic LTL, can be found at the Spin website10. A
model checker called FDR2 based on the process algebra CSP is available11.

6 www.cs.cmu.edu/~modelcheck/
7 nusmv.irst.itc.it
8 www-cad.eecs.berkeley.edu/~kenmcmil/
9 patterns.projects.cis.ksu.edu/
10 netlib.bell-labs.com/netlib/spin/whatispin.html
11 www.fsel.com.fdr2 download.html

3.9 Bibliographic notes 255

The Edinburgh Concurrency Workbench12 and the Concurrency Workbench
of North Carolina13 are similar software tools for the design and analysis of
concurrent systems. An example of a customisable and extensible modular
model checking frameworks for the verification of concurrent software is
Bogor14.

There are many textbooks about verification of reactive systems; we men-
tion [MP91, MP95, Ros97, Hol90]. The SMV code contained in this chapter
can be downloaded from www.cs.bham.ac.uk/research/lics/.

12 www.dcs.ed.ac.uk/home/cwb
13 www.cs.sunysb.edu/~cwb
14 http://bogor.projects.cis.ksu.edu/

4

Program verification

The methods of the previous chapter are suitable for verifying systems of
communicating processes, where control is the main issue, but there are no
complex data. We relied on the fact that those (abstracted) systems are
in a finite state. These assumptions are not valid for sequential programs
running on a single processor, the topic of this chapter. In those cases, the
programs may manipulate non-trivial data and – once we admit variables of
type integer, list, or tree – we are in the domain of machines with infinite
state space.

In terms of the classification of verification methods given at the beginning
of the last chapter, the methods of this chapter are

Proof-based. We do not exhaustively check every state that the system
can get in to, as one does with model checking; this would be impossi-
ble, given that program variables can have infinitely many interacting
values. Instead, we construct a proof that the system satisfies the prop-
erty at hand, using a proof calculus. This is analogous to the situation
in Chapter 2, where using a suitable proof calculus avoided the prob-
lem of having to check infinitely many models of a set of predicate logic
formulas in order to establish the validity of a sequent.

Semi-automatic. Although many of the steps involved in proving that
a program satisfies its specification are mechanical, there are some steps
that involve some intelligence and that cannot be carried out algorith-
mically by a computer. As we will see, there are often good heuristics
to help the programmer complete these tasks. This contrasts with the
situation of the last chapter, which was fully automatic.

Property-oriented. Just like in the previous chapter, we verify proper-
ties of a program rather than a full specification of its behaviour.

256

4.1 Why should we specify and verify code? 257

Application domain. The domain of application in this chapter is se-
quential transformational programs. ‘Sequential’ means that we assume
the program runs on a single processor and that there are no concur-
rency issues. ‘Transformational’ means that the program takes an input
and, after some computation, is expected to terminate with an output.
For example, methods of objects in Java are often programmed in this
style. This contrasts with the previous chapter which focuses on reactive
systems that are not intended to terminate and that react continually
with their environment.

Pre/post-development. The techniques of this chapter should be used
during the coding process for small fragments of program that perform
an identifiable (and hence, specifiable) task and hence should be used
during the development process in order to avoid functional bugs.

4.1 Why should we specify and verify code?

The task of specifying and verifying code is often perceived as an unwel-
come addition to the programmer’s job and a dispensable one. Arguments
in favour of verification include the following:

� Documentation: The specification of a program is an important component
in its documentation and the process of documenting a program may raise or
resolve important issues. The logical structure of the formal specification, written
as a formula in a suitable logic, typically serves as a guiding principle in trying
to write an implementation in which it holds.

� Time-to-market: Debugging big systems during the testing phase is costly and
time-consuming and local ‘fixes’ often introduce new bugs at other places. Ex-
perience has shown that verifying programs with respect to formal specifications
can significantly cut down the duration of software development and maintenance
by eliminating most errors in the planning phase and helping in the clarification
of the roles and structural aspects of system components.

� Refactoring: Properly specified and verified software is easier to reuse, since
we have a clear specification of what it is meant to do.

� Certification audits: Safety-critical computer systems – such as the control
of cooling systems in nuclear power stations, or cockpits of modern aircrafts –
demand that their software be specified and verified with as much rigour and
formality as possible. Other programs may be commercially critical, such as ac-
countancy software used by banks, and they should be delivered with a warranty:
a guarantee for correct performance within proper use. The proof that a program
meets its specifications is indeed such a warranty.

258 4 Program verification

The degree to which the software industry accepts the benefits of proper
verification of code depends on the perceived extra cost of producing it and
the perceived benefits of having it. As verification technology improves, the
costs are declining; and as the complexity of software and the extent to which
society depends on it increase, the benefits are becoming more important.
Thus, we can expect that the importance of verification to industry will
continue to increase over the next decades. Microsoft’s emergent technology
A# combines program verification, testing, and model-checking techniques
in an integrated in-house development environment.

Currently, many companies struggle with a legacy of ancient code with-
out proper documentation which has to be adapted to new hardware and
network environments, as well as ever-changing requirements. Often, the
original programmers who might still remember what certain pieces of code
are for have moved, or died. Software systems now often have a longer
life-expectancy than humans, which necessitates a durable, transparent and
portable design and implementation process; the year-2000 problem was just
one such example. Software verification provides some of this.

4.2 A framework for software verification

Suppose you are working for a software company and your task is to write
programs which are meant to solve sophisticated problems, or computations.
Typically, such a project involves an outside customer – a utility company,
for example – who has written up an informal description, in plain English,
of the real-world task that is at hand. In this case, it could be the devel-
opment and maintenance of a database of electricity accounts with all the
possible applications of that – automated billing, customer service etc. Since
the informality of such descriptions may cause ambiguities which eventually
could result in serious and expensive design flaws, it is desirable to condense
all the requirements of such a project into formal specifications. These formal
specifications are usually symbolic encodings of real-world constraints into
some sort of logic. Thus, a framework for producing the software could be:

� Convert the informal description R of requirements for an application domain
into an ‘equivalent’ formula φR of some symbolic logic;

� Write a program P which is meant to realise φR in the programming environment
supplied by your company, or wanted by the particular customer;

� Prove that the program P satisfies the formula φR.

This scheme is quite crude – for example, constraints may be actual design
decisions for interfaces and data types, or the specification may ‘evolve’

4.2 A framework for software verification 259

and may partly be ‘unknown’ in big projects – but it serves well as a first
approximation to trying to define good programming methodology. Several
variations of such a sequence of activities are conceivable. For example,
you, as a programmer, might have been given only the formula φR, so you
might have little if any insight into the real-world problem which you are
supposed to solve. Technically, this poses no problem, but often it is handy
to have both informal and formal descriptions available. Moreover, crafting
the informal requirements R is often a mutual process between the client
and the programmer, whereby the attempt at formalising R can uncover
ambiguities or undesired consequences and hence lead to revisions of R.

This ‘going back and forth’ between the realms of informal and formal
specifications is necessary since it is impossible to ‘verify’ whether an infor-
mal requirement R is equivalent to a formal description φR. The meaning
of R as a piece of natural language is grounded in common sense and gen-
eral knowledge about the real-world domain and often based on heuristics
or quantitative reasoning. The meaning of a logic formula φR, on the other
hand, is defined in a precise mathematical, qualitative and compositional
way by structural induction on the parse tree of φR – the first three chap-
ters contain examples of this.

Thus, the process of finding a suitable formalisation φR of R requires
the utmost care; otherwise it is always possible that φR specifies behaviour
which is different from the one described in R. To make matters worse, the
requirements R are often inconsistent; customers usually have a fairly vague
conception of what exactly a program should do for them. Thus, producing
a clear and coherent description R of the requirements for an application do-
main is already a crucial step in successful programming; this phase ideally is
undertaken by customers and project managers around a table, or in a video
conference, talking to each other. We address this first item only implicitly
in this text, but you should certainly be aware of its importance in practice.

The next phase of the software development framework involves construct-
ing the program P and after that the last task is to verify that P satisfies φR.
Here again, our framework is oversimplifying what goes on in practice, since
often proving that P satisfies its specification φR goes hand-in-hand with
inventing a suitable P . This correspondence between proving and program-
ming can be stated quite precisely, but that is beyond the scope of this book.

4.2.1 A core programming language

The programming language which we set out to study here is the typical
core language of most imperative programming languages. Modulo trivial

260 4 Program verification

syntactic variations, it is a subset of Pascal, C, C++ and Java. Our lan-
guage consists of assignments to integer- and boolean-valued variables, if-
statements, while-statements and sequential compositions. Everything that
can be computed by large languages like C and Java can also be computed
by our language, though perhaps not as conveniently, because it does not
have any objects, procedures, threads or recursive data structures. While
this makes it seem unrealistic compared with fully blown commercial lan-
guages, it allows us to focus our discussion on the process of formal program
verification. The features missing from our language could be implemented
on top of it; that is the justification for saying that they do not add to the
power of the language, but only to the convenience of using it. Verifying
programs using those features would require non-trivial extensions of the
proof calculus we present here. In particular, dynamic scoping of variables
presents hard problems for program-verification methods, but this is beyond
the scope of this book.

Our core language has three syntactic domains: integer expressions,
boolean expressions and commands – the latter we consider to be our
programs. Integer expressions are built in the familiar way from variables
x, y, z, . . . , numerals 0, 1, 2, . . . ,−1,−2, . . . and basic operations like addition
(+) and multiplication (∗). For example,

5
x

4 + (x− 3)
x+ (x ∗ (y − (5 + z)))

are all valid integer expressions. Our grammar for generating integer expres-
sions is

E ::= n | x | (−E) | (E + E) | (E − E) | (E ∗ E) (4.1)

where n is any numeral in {. . . ,−2,−1, 0, 1, 2, . . . } and x is any variable.
Note that we write multiplication in ‘mathematics’ as 2 · 3, whereas our
core language writes 2 ∗ 3 instead.

Convention 4.1 In the grammar above, negation − binds more tightly
than multiplication ∗, which binds more tightly than subtraction − and
addition +.

Since if-statements and while-statements contain conditions in them, we
also need a syntactic domain B of boolean expressions. The grammar in

4.2 A framework for software verification 261

Backus Naur form

B ::= true | false | (!B) | (B&B) | (B ||B) | (E < E) (4.2)

uses ! for the negation, & for conjunction and || for disjunction of
boolean expressions. This grammar may be freely expanded by operators
which are definable in terms of the above. For example, the test for equal-
ity1 E1 == E2 may be expressed via !(E1 < E2) & !(E2 < E1). We gener-
ally make use of shorthand notation whenever this is convenient. We also
write (E1 != E2) to abbreviate !(E1 == E2). We will also assume the usual
binding priorities for logical operators stated in Convention 1.3 on page 5.
Boolean expressions are built on top of integer expressions since the last
clause of (4.2) mentions integer expressions.

Having integer and boolean expressions at hand, we can now define the
syntactic domain of commands. Since commands are built from simpler com-
mands using assignments and the control structures, you may think of com-
mands as the actual programs. We choose as grammar for commands

C ::= x = E | C;C | if B {C} else {C} | while B {C} (4.3)

where the braces { and } are to mark the extent of the blocks of code in the
if-statement and the while-statement, as in languages such as C and Java.
They can be omitted if the blocks consist of a single statement. The intuitive
meaning of the programming constructs is the following:

1. The atomic command x = E is the usual assignment statement; it evaluates
the integer expression E in the current state of the store and then overwrites
the current value stored in x with the result of that evaluation.

2. The compound command C1;C2 is the sequential composition of the commands
C1 and C2. It begins by executing C1 in the current state of the store. If that
execution terminates, then it executes C2 in the storage state resulting from the
execution of C1. Otherwise – if the execution of C1 does not terminate – the
run of C1;C2 also does not terminate. Sequential composition is an example of
a control structure since it implements a certain policy of flow of control in a
computation.

1 In common with languages like C and Java, we use a single equals sign = to mean assignment
and a double sign == to mean equality. Earlier languages like Pascal used := for assignment and
simple = for equality; it is a great pity that C and its successors did not keep this convention.
The reason that = is a bad symbol for assignment is that assignment is not symmetric: if we
interpret x = y as the assignment, then x becomes y which is not the same thing as y becoming
x; yet, x = y and y = x are the same thing if we mean equality. The two dots in := helped
remind the reader that this is an asymmetric assignment operation rather than a symmetric
assertion of equality. However, the notation = for assignment is now commonplace, so we will
use it.

262 4 Program verification

3. Another control structure is if B {C1} else {C2}. It first evaluates the boolean
expression B in the current state of the store; if that result is true, then C1 is
executed; if B evaluated to false, then C2 is executed.

4. The third control construct while B {C} allows us to write statements which
are executed repeatedly. Its meaning is that:

a the boolean expression B is evaluated in the current state of the store;
b if B evaluates to false, then the command terminates,
c otherwise, the command C will be executed. If that execution terminates,

then we resume at step (a) with a re-evaluation of B as the updated state
of the store may have changed its value.

The point of the while-statement is that it repeatedly executes the command
C as long as B evaluates to true. If B never becomes false, or if one of the
executions of C does not terminate, then the while-statement will not termi-
nate. While-statements are the only real source of non-termination in our core
programming language.

Example 4.2 The factorial n! of a natural number n is defined induc-
tively by

0! def= 1
(4.4)

(n+ 1)! def= (n+ 1) · n!

For example, unwinding this definition for n being 4, we get 4! def= 4 · 3! =
· · · = 4 · 3 · 2 · 1 · 0! = 24. The following program Fac1:

y = 1;
z = 0;
while (z != x) {

z = z + 1;
y = y * z;

}
is intended to compute the factorial2 of x and to store the result in y. We
will prove that Fac1 really does this later in the chapter.

4.2.2 Hoare triples

Program fragments generated by (4.3) commence running in a ‘state’ of the
machine. After doing some computation, they might terminate. If they do,
then the result is another, usually different, state. Since our programming

2 Please note the difference between the formula x! = y, saying that the factorial of x is equal to
y, and the piece of code x != y which says that x is not equal to y.

4.2 A framework for software verification 263

language does not have any procedures or local variables, the ‘state’ of the
machine can be represented simply as a vector of values of all the variables
used in the program.

What syntax should we use for φR, the formal specifications of require-
ments for such programs? Because we are interested in the output of the
program, the language should allow us to talk about the variables in the
state after the program has executed, using operators like = to express
equality and < for less than. You should be aware of the overloading of
=. In code, it represents an assignment instruction; in logical formulas, it
stands for equality, which we write == within program code.

For example, if the informal requirement R says that we should

Compute a number y whose square is less than the input x.

then an appropriate specification may be y · y < x. But what if the input x
is −4? There is no number whose square is less than a negative number, so
it is not possible to write the program in a way that it will work with all
possible inputs. If we go back to the client and say this, he or she is quite
likely to respond by saying that the requirement is only that the program
work for positive numbers; i.e., he or she revises the informal requirement
so that it now says

If the input x is a positive number, compute a number whose square
is less than x.

This means we need to be able to talk not just about the state after the
program executes, but also about the state before it executes. The assertions
we make will therefore be triples, typically looking like(

φ
)
P
(
ψ
)

(4.5)

which (roughly) means:

If the program P is run in a state that satisfies φ, then the state
resulting from P ’s execution will satisfy ψ.

The specification of the program P , to calculate a number whose square is
less than x, now looks like this:(

x > 0
)
P
(
y · y < x

)
. (4.6)

It means that, if we run P in a state such that x > 0, then the resulting
state will be such that y · y < x. It does not tell us what happens if we run
P in a state in which x ≤ 0, the client required nothing for non-positive
values of x. Thus, the programmer is free to do what he or she wants in that
case. A program which produces ‘garbage’ in the case that x ≤ 0 satisfies
the specification, as long as it works correctly for x > 0.

264 4 Program verification

Let us make these notions more precise.

Definition 4.3 1. The form
(
φ
)
P
(
ψ
)

of our specification is called a Hoare
triple, after the computer scientist C. A. R. Hoare.

2. In (4.5), the formula φ is called the precondition of P and ψ is called the
postcondition.

3. A store or state of core programs is a function l that assigns to each variable
x an integer l(x).

4. For a formula φ of predicate logic with function symbols − (unary), +, −, and ∗
(binary); and a binary predicate symbols < and =, we say that a state l satisfies
φ or l is a φ-state – written l � φ – iff M �l φ from page 128 holds, where l
is viewed as a look-up table and the model M has as set A all integers and
interprets the function and predicate symbols in their standard manner.

5. For Hoare triples in (4.5), we demand that quantifiers in φ and ψ only bind
variables that do not occur in the program P .

Example 4.4 For any state l for which l(x) = −2, l(y) = 5, and l(z) = −1,
the relation

1. l � ¬(x+ y < z) holds since x+ y evaluates to −2 + 5 = 3, z evaluates to l(z) =
−1, and 3 is not strictly less than −1;

2. l � y − x ∗ z < z does not hold, since the lefthand expression evaluates to 5 −
(−2) · (−1) = 3 which is not strictly less than l(z) = −1;

3. l � ∀u (y < u→ y ∗ z < u ∗ z) does not hold; for u being 7, l � y < u holds, but
l � y ∗ z < u ∗ z does not.

Often, we do not want to put any constraints on the initial state; we
simply wish to say that, no matter what state we start the program in, the
resulting state should satisfy ψ. In that case the precondition can be set to
�, which is – as in previous chapters – a formula which is true in any state.

Note that the triple in (4.6) does not specify a unique program P , or
a unique behaviour. For example, the program which simply does y = 0;
satisfies the specification – since 0 · 0 is less than any positive number – as
does the program

y = 0;
while (y * y < x) {

y = y + 1;
}

y = y - 1;

This program finds the greatest y whose square is less than x; the while-
statement overshoots a bit, but then we fix it after the while-statement.3

3 We could avoid this inelegance by using the repeat construct of exercise 3 on page 299.

4.2 A framework for software verification 265

Note that these two programs have different behaviour. For example, if x is
22, the first one will compute y = 0 and the second will render y = 4; but
both of them satisfy the specification.

Our agenda, then, is to develop a notion of proof which allows us to
prove that a program P satisfies the specification given by a precondition
φ and a postcondition ψ in (4.5). Recall that we developed proof calculi
for propositional and predicate logic where such proofs could be accom-
plished by investigating the structure of the formula one wanted to prove.
For example, for proving an implication φ→ ψ one had to assume φ and
manage to show ψ; then the proof could be finished with the proof rule for
implies-introduction. The proof calculi which we are about to develop follow
similar lines. Yet, they are different from the logics we previously studied
since they prove triples which are built from two different sorts of things:
logical formulas φ and ψ versus a piece of code P . Our proof calculi have to
address each of these appropriately. Nonetheless, we retain proof strategies
which are compositional, but now in the structure of P . Note that this is
an important advantage in the verification of big projects, where code is
built from a multitude of modules such that the correctness of certain parts
will depend on the correctness of certain others. Thus, your code might
call subroutines which other members of your project are about to code,
but you can already check the correctness of your code by assuming that
the subroutines meet their own specifications. We will explore this topic in
Section 4.5.

4.2.3 Partial and total correctness

Our explanation of when the triple
(
φ
)
P
(
ψ
)

holds was rather informal. In
particular, it did not say what we should conclude if P does not terminate.
In fact there are two ways of handling this situation. Partial correctness
means that we do not require the program to terminate, whereas in total
correctness we insist upon its termination.

Definition 4.5 (Partial correctness) We say that the triple
(
φ
)
P
(
ψ
)

is satisfied under partial correctness if, for all states which satisfy φ, the
state resulting from P ’s execution satisfies the postcondition ψ, provided
that P actually terminates. In this case, the relation �par

(
φ
)
P
(
ψ
)

holds.
We call �par the satisfaction relation for partial correctness.

Thus, we insist on ψ being true of the resulting state only if the program P

has terminated on an input satisfying φ. Partial correctness is rather a weak
requirement, since any program which does not terminate at all satisfies its

266 4 Program verification

specification. In particular, the program

while true { x = 0; }
– which endlessly ‘loops’ and never terminates – satisfies all specifications,
since partial correctness only says what must happen if the program termi-
nates.

Total correctness, on the other hand, requires that the program terminates
in order for it to satisfy a specification.

Definition 4.6 (Total correctness) We say that the triple
(
φ
)
P
(
ψ
)

is
satisfied under total correctness if, for all states in which P is executed which
satisfy the precondition φ, P is guaranteed to terminate and the resulting
state satisfies the postcondition ψ. In this case, we say that �tot

(
φ
)
P
(
ψ
)

holds and call �tot the satisfaction relation of total correctness.

A program which ‘loops’ forever on all input does not satisfy any spec-
ification under total correctness. Clearly, total correctness is more useful
than partial correctness, so the reader may wonder why partial correctness
is introduced at all. Proving total correctness usually benefits from prov-
ing partial correctness first and then proving termination. So, although our
primary interest is in proving total correctness, it often happens that we
have to or may wish to split this into separate proofs of partial correctness
and of termination. Most of this chapter is devoted to the proof of partial
correctness, though we return to the issue of termination in Section 4.4.

Before we delve into the issue of crafting sound and complete proof calculi
for partial and total correctness, let us briefly give examples of typical sorts
of specifications which we would like to be able to prove.

Examples 4.7

1. Let Succ be the program

a = x + 1;

if (a - 1 == 0) {
y = 1;

} else {
y = a;

}

The program Succ satisfies the specification
(�) Succ (y = (x+ 1)

)
under par-

tial and total correctness, so if we think of x as input and y as output, then
Succ computes the successor function. Note that this code is far from optimal.

4.2 A framework for software verification 267

In fact, it is a rather roundabout way of implementing the successor function.
Despite this non-optimality, our proof rules need to be able to prove this pro-
gram behaviour.

2. The program Fac1 from Example 4.2 terminates only if x is initially non-
negative – why? Let us look at what properties of Fac1 we expect to be able to
prove.

We should be able to prove that �tot

(
x ≥ 0

)
Fac1

(
y = x!

)
holds. It states

that, provided x ≥ 0, Fac1 terminates with the result y = x!. However, the
stronger statement that �tot

(�) Fac1 (y = x!
)

holds should not be provable,
because Fac1 does not terminate for negative values of x.

For partial correctness, both statements �par

(
x ≥ 0

)
Fac1

(
y = x!

)
and

�par

(�) Fac1 (y = x!
)

should be provable since they hold.

Definition 4.8 1. If the partial correctness of triples
(
φ
)
P
(
ψ
)

can be proved
in the partial-correctness calculus we develop in this chapter, we say that the
sequent �par

(
φ
)
P
(
ψ
)

is valid.
2. Similarly, if it can be proved in the total-correctness calculus to be developed

in this chapter, we say that the sequent �tot

(
φ
)
P
(
ψ
)

is valid.

Thus, �par

(
φ
)
P
(
ψ
)

holds if P is partially correct, while the validity of
�par

(
φ
)
P
(
ψ
)

means that P can be proved to be partially-correct by our
calculus. The first one means it is actually correct, while the second one
means it is provably correct according to our calculus.

If our calculus is any good, then the relation �par should be contained in
�par! More precisely, we will say that our calculus is sound if, whenever it
tells us something can be proved, that thing is indeed true. Thus, it is sound
if it doesn’t tell us that false things can be proved. Formally, we write that
�par is sound if

�par

(
φ
)
P
(
ψ
)

holds whenever �par

(
φ
)
P
(
ψ
)

is valid

for all φ, ψ and P ; and, similarly, �tot is sound if

�tot

(
φ
)
P
(
ψ
)

holds whenever �tot

(
φ
)
P
(
ψ
)

is valid

for all φ, ψ and P . We say that a calculus is complete if it is able to prove
everything that is true. Formally, �par is complete if

�par

(
φ
)
P
(
ψ
)

is valid whenever �par

(
φ
)
P
(
ψ
)

holds

for all φ, ψ and P ; and similarly for �tot being complete.
In Chapters 1 and 2, we said that soundness is relatively easy to show,

since typically the soundness of individual proof rules can be established
independently of the others. Completeness, on the other hand, is harder to

268 4 Program verification

show since it depends on the entire set of proof rules cooperating together.
The same situation holds for the program logic we introduce in this chapter.
Establishing its soundness is simply a matter of considering each rule in
turn – done in exercise 3 on page 303 – whereas establishing its (relative)
completeness is harder and beyond the scope of this book.

4.2.4 Program variables and logical variables

The variables which we have seen so far in the programs that we verify
are called program variables. They can also appear in the preconditions and
postconditions of specifications. Sometimes, in order to formulate specifica-
tions, we need to use other variables which do not appear in programs.

Examples 4.9

1. Another version of the factorial program might have been Fac2:
y = 1;

while (x != 0) {
y = y * x;

x = x - 1;

}
Unlike the previous version, it ‘consumes’ the input x. Nevertheless, it cor-
rectly calculates the factorial of x and stores the value in y; and we would
like to express that as a Hoare triple. However, it is not a good idea to write(
x ≥ 0

)
Fac2

(
y = x!

)
because, if the program terminates, then x will be 0 and

y will be the factorial of the initial value of x.
We need a way of remembering the initial value of x, to cope with the fact

that it is modified by the program. Logical variables achieve just that: in the
specification

(
x = x0 ∧ x ≥ 0

)
Fac2

(
y = x0!

)
the x0 is a logical variable and

we read it as being universally quantified in the precondition. Therefore, this
specification reads: for all integers x0, if x equals x0, x ≥ 0 and we run the
program such that it terminates, then the resulting state will satisfy y equals
x0!. This works since x0 cannot be modified by Fac2 as x0 does not occur in
Fac2.

2. Consider the program Sum:
z = 0;

while (x > 0) {
z = z + x;

x = x - 1;

}
This program adds up the first x integers and stores the result in z.
Thus,

(
x = 3

)
Sum

(
z = 6

)
,
(
x = 8

)
Sum

(
z = 36

)
etc. We know from The-

orem 1.31 on page 41 that 1 + 2 + · · · + x = x(x+ 1)/2 for all x ≥ 0, so

4.3 Proof calculus for partial correctness 269

we would like to express, as a Hoare triple, that the value of z upon
termination is x0(x0 + 1)/2 where x0 is the initial value of x. Thus, we write(
x = x0 ∧ x ≥ 0

)
Sum

(
z = x0(x0 + 1)/2

)
.

Variables like x0 in these examples are called logical variables, because they
occur only in the logical formulas that constitute the precondition and post-
condition; they do not occur in the code to be verified. The state of the
system gives a value to each program variable, but not for the logical vari-
ables. Logical variables take a similar role to the dummy variables of the
rules for ∀i and ∃e in Chapter 2.

Definition 4.10 For a Hoare triple
(
φ
)
P
(
ψ
)
, its set of logical variables

are those variables that are free in φ or ψ; and don’t occur in P .

4.3 Proof calculus for partial correctness

The proof calculus which we now present goes back to R. Floyd and C.
A. R. Hoare. In the next subsection, we specify proof rules for each of the
grammar clauses for commands. We could go on to use these proof rules
directly, but it turns out to be more convenient to present them in a different
form, suitable for the construction of proofs known as proof tableaux. This
is what we do in the subsection following the next one.

4.3.1 Proof rules

The proof rules for our calculus are given in Figure 4.1. They should be
interpreted as rules that allow us to pass from simple assertions of the form(
φ
)
P
(
ψ
)

to more complex ones. The rule for assignment is an axiom as
it has no premises. This allows us to construct some triples out of noth-
ing, to get the proof going. Complete proofs are trees, see page 274 for an
example.

Composition. Given specifications for the program fragments C1 and C2,
say (

φ
)
C1

(
η
)

and
(
η
)
C2

(
ψ
)
,

where the postcondition of C1 is also the precondition of C2, the proof
rule for sequential composition shown in Figure 4.1 allows us to derive a
specification for C1;C2, namely(

φ
)
C1;C2

(
ψ
)
.

270 4 Program verification(
φ
)
C1

(
η
) (

η
)
C2

(
ψ
)(

φ
)
C1;C2

(
ψ
) Composition

(
ψ[E/x]

)
x = E

(
ψ
) Assignment

(
φ ∧B)C1

(
ψ
) (

φ ∧ ¬B)C2

(
ψ
)(

φ
)
if B {C1} else {C2}

(
ψ
) If-statement

(
ψ ∧B)C (ψ)(

ψ
)
while B {C} (ψ ∧ ¬B) Partial-while

�AR φ
′ → φ

(
φ
)
C
(
ψ
) �AR ψ → ψ′(

φ′
)
C
(
ψ′) Implied

Figure 4.1. Proof rules for partial correctness of Hoare triples.

Thus, if we know that C1 takes φ-states to η-states and C2 takes η-states
to ψ-states, then running C1 and C2 in that sequence will take φ-states to
ψ-states.

Using the proof rules of Figure 4.1 in program verification, we have to
read them bottom-up: e.g. in order to prove

(
φ
)
C1;C2

(
ψ
)
, we need to find

an appropriate η and prove
(
φ
)
C1

(
η
)

and
(
η
)
C2

(
ψ
)
. If C1;C2 runs on

input satisfying φ and we need to show that the store satisfies ψ after its
execution, then we hope to show this by splitting the problem into two. After
the execution of C1, we have a store satisfying η which, considered as input
for C2, should result in an output satisfying ψ. We call η a midcondition.

Assignment. The rule for assignment has no premises and is therefore an
axiom of our logic. It tells us that, if we wish to show that ψ holds in the state
after the assignment x = E, we must show that ψ[E/x] holds before the
assignment; ψ[E/x] denotes the formula obtained by taking ψ and replacing
all free occurrences of x with E as defined on page 105. We read the stroke
as ‘in place of;’ thus, ψ[E/x] is ψ with E in place of x. Several explanations
may be required to understand this rule.

� At first sight, it looks as if the rule has been stated in reverse; one might expect
that, if ψ holds in a state in which we perform the assignment x = E, then surely

4.3 Proof calculus for partial correctness 271

ψ[E/x] holds in the resulting state, i.e. we just replace x by E. This is wrong. It
is true that the assignment x = E replaces the value of x in the starting state
by E, but that does not mean that we replace occurrences of x in a condition on
the starting state by E.

For example, let ψ be x = 6 and E be 5. Then
(
ψ
)
x = 5

(
ψ[x/E]

)
does not

hold: given a state in which x equals 6, the execution of x = 5 results in a
state in which x equals 5. But ψ[x/E] is the formula 5 = 6 which holds in no
state.

The right way to understand the Assignment rule is to think about what you
would have to prove about the initial state in order to prove that ψ holds in
the resulting state. Since ψ will – in general – be saying something about the
value of x, whatever it says about that value must have been true of E, since
in the resulting state the value of x is E. Thus, ψ with E in place of x – which
says whatever ψ says about x but applied to E – must be true in the initial
state.

� The axiom
(
ψ[E/x]

)
x = E

(
ψ
)

is best applied backwards than forwards in the
verification process. That is to say, if we know ψ and we wish to find φ such
that

(
φ
)
x = E

(
ψ
)
, it is easy: we simply set φ to be ψ[E/x]; but, if we know

φ and we want to find ψ such that
(
φ
)
x = E

(
ψ
)
, there is no easy way of

getting a suitable ψ. This backwards characteristic of the assignment and the
composition rule will be important when we look at how to construct proofs;
we will work from the end of a program to its beginning.

� If we apply this axiom in this backwards fashion, then it is completely
mechanical to apply. It just involves doing a substitution. That means we could
get a computer to do it for us. Unfortunately, that is not true for all the rules;
application of the rule for while-statements, for example, requires ingenuity.
Therefore a computer can at best assist us in performing a proof by carrying
out the mechanical steps, such as application of the assignment axiom, while
leaving the steps that involve ingenuity to the programmer.

� Observe that, in computing ψ[E/x] from ψ, we replace all the free occurrences of
x in ψ. Note that there cannot be problems caused by bound occurrences, as seen
in Example 2.9 on page 106, provided that preconditions and postconditions quan-
tify over logical variables only. For obvious reasons, this is recommended practice.

Examples 4.11

1. Suppose P is the program x = 2. The following are instances of axiom
Assignment:

a
(
2 = 2

)
P
(
x = 2

)
b
(
2 = 4

)
P
(
x = 4

)
c
(
2 = y

)
P
(
x = y

)
d
(
2 > 0

)
P
(
x > 0

)
.

272 4 Program verification

These are all correct statements. Reading them backwards, we see that they
say:

a If you want to prove x = 2 after the assignment x = 2, then we must be able
to prove that 2 = 2 before it. Of course, 2 is equal to 2, so proving it shouldn’t
present a problem.

b If you wanted to prove that x = 4 after the assignment, the only way in which
it would work is if 2 = 4; however, unfortunately it is not. More generally,(⊥)x = E

(
ψ
)

holds for any E and ψ – why?
c If you want to prove x = y after the assignment, you will need to prove that

2 = y before it.
d To prove x > 0, we’d better have 2 > 0 prior to the execution of P .

2. Suppose P is x = x+ 1. By choosing various postconditions, we obtain the fol-
lowing instances of the assignment axiom:

a
(
x+ 1 = 2

)
P
(
x = 2

)
b
(
x+ 1 = y

)
P
(
x = y

)
c
(
x+ 1 + 5 = y

)
P
(
x+ 5 = y

)
d
(
x+ 1 > 0 ∧ y > 0

)
P
(
x > 0 ∧ y > 0

)
.

Note that the precondition obtained by performing the substitution can often be
simplified. The proof rule for implications below will allow such simplifications
which are needed to make preconditions appreciable by human consumers.

If-statements. The proof rule for if-statements allows us to prove a triple
of the form (

φ
)
if B {C1} else {C2}

(
ψ
)

by decomposing it into two triples, subgoals corresponding to the cases of
B evaluating to true and to false. Typically, the precondition φ will not tell
us anything about the value of the boolean expression B, so we have to
consider both cases. If B is true in the state we start in, then C1 is executed
and hence C1 will have to translate φ states to ψ states; alternatively, if
B is false, then C2 will be executed and will have to do that job. Thus,
we have to prove that

(
φ ∧B)C1

(
ψ
)

and
(
φ ∧ ¬B)C2

(
ψ
)
. Note that the

preconditions are augmented by the knowledge that B is true and false,
respectively. This additional information is often crucial for completing the
respective subproofs.

While-statements. The rule for while-statements given in Figure 4.1 is ar-
guably the most complicated one. The reason is that the while-statement
is the most complicated construct in our language. It is the only command
that ‘loops,’ i.e. executes the same piece of code several times. Also, unlike
as the for-statement in languages like Java we cannot generally predict how

4.3 Proof calculus for partial correctness 273

many times while-statements will ‘loop’ around, or even whether they will
terminate at all.

The key ingredient in the proof rule for Partial-while is the ‘invariant’ ψ.
In general, the body C of the command while (B) {C} changes the values
of the variables it manipulates; but the invariant expresses a relationship
between those values which is preserved by any execution of C. In the proof
rule, ψ expresses this invariant; the rule’s premise,

(
ψ ∧B)C (ψ), states

that, if ψ and B are true before we execute C, and C terminates, then ψ

will be true after it. The conclusion of Partial-while states that, no matter
how many times the body C is executed, if ψ is true initially and the while-
statement terminates, then ψ will be true at the end. Moreover, since the
while-statement has terminated, B will be false.

Implied. One final rule is required in our calculus: the rule Implied of Figure
4.1. It tells us that, if we have proved

(
φ
)
P
(
ψ
)

and we have a formula φ′

which implies φ and another one ψ′ which is implied by ψ, then we should
also be allowed to prove that

(
φ′
)
P
(
ψ′). A sequent �ARφ→ φ′ is valid iff

there is a proof of φ′ in the natural deduction calculus for predicate logic,
where φ and standard laws of arithmetic – e.g. ∀x (x = x+ 0) – are premises.
Note that the rule Implied allows the precondition to be strengthened (thus,
we assume more than we need to), while the postcondition is weakened (i.e.
we conclude less than we are entitled to). If we tried to do it the other way
around, weakening the precondition or strengthening the postcondition, then
we would conclude things which are incorrect – see exercise 9(a) on page 300.

The rule Implied acts as a link between program logic and a suitable
extension of predicate logic. It allows us to import proofs in predicate logic
enlarged with the basic facts of arithmetic, which are required for reasoning
about integer expressions, into the proofs in program logic.

4.3.2 Proof tableaux

The proof rules presented in Figure 4.1 are not in a form which is easy
to use in examples. To illustrate this point, we present an example of a
proof in Figure 4.2; it is a proof of the triple

(�) Fac1 (y = x!
)

where Fac1
is the factorial program given in Example 4.2. This proof abbreviates rule
names; and drops the bars and names for Assignment as well as sequents
for �AR in all applications of the Implied rule. We have not yet presented
enough information for the reader to complete such a proof on her own,
but she can at least use the proof rules in Figure 4.1 to check whether all
rule instances of that proof are permissible, i.e. match the required pat-
tern.

274 4 Program verification

(1
=

1
) y

=
1
(y

=
1
) i

(�
) y

=
1
(y

=
1
)

(y
=

1
∧ 0

=
0
) z

=
0
(y

=
1
∧ z

=
0
) i

(y
=

1
) z

=
0
(y

=
1
∧ z

=
0
) c

(�
) y

=
1;

z
=
0
(y

=
1
∧ z

=
0
)

(y
· (z

+
1)

=
(z

+
1)

!
) z

=
z+
1
(y
· z

=
z!
) i

(y
=
z!
∧ z

�=
x
) z

=
z+
1
(y
· z

=
z!
)

(y
· z

=
z!
) y

=
y*
z
(y

=
z!
) c

(y
=
z!
∧ z

�=
x
) z

=
z+
1;

y
=
y*
z
(y

=
z!
)

w

(y
=
z!
) wh

il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
z!
∧ z

=
x
) i

(y
=

1
∧ z

=
0
) wh

il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
x
!
) c

(�
) y

=
1;

z
=
0;

wh
il
e
(z

!=
x)

{z
=
z+
1;

y
=
y*
z}
(y

=
x
!
)

Figure 4.2. A partial-correctness proof for Fac1 in tree form.

4.3 Proof calculus for partial correctness 275

It should be clear that proofs in this form are unwieldy to work with.
They will tend to be very wide and a lot of information is copied from one
line to the next. Proving properties of programs which are longer than Fac1
would be very difficult in this style. In Chapters 1, 2 and 5 we abandon
representation of proofs as trees for similar reasons. The rule for sequential
composition suggests a more convenient way of presenting proofs in pro-
gram logic, called proof tableaux. We can think of any program of our core
programming language as a sequence

C1;

C2;
·
·
·
Cn

where none of the commands Ci is a composition of smaller programs, i.e. all
of the Ci above are either assignments, if-statements or while-statements. Of
course, we allow the if-statements and while-statements to have embedded
compositions.

Let P stand for the program C1;C2; . . . ;Cn−1;Cn. Suppose that we want
to show the validity of �par

(
φ0

)
P
(
φn
)

for a precondition φ0 and a postcon-
dition φn. Then, we may split this problem into smaller ones by trying to
find formulas φj (0 < j < n) and prove the validity of �par

(
φi
)
Ci+1

(
φi+1

)
for i = 0, 1, . . . , n− 1. This suggests that we should design a proof calcu-
lus which presents a proof of �par

(
φ0

)
P
(
ψn
)

by interleaving formulas with
code as in (

φ0

)
C1;(

φ1

)
justification

C2;

·
·
· (

φn−1

)
justification

Cn;(
φn
)

justification

276 4 Program verification

Against each formula, we write a justification, whose nature will be clarified
shortly. Proof tableaux thus consist of the program code interleaved with
formulas, which we call midconditions, that should hold at the point they
are written.

Each of the transitions (
φi
)

Ci+1(
φi+1

)
will appeal to one of the rules of Figure 4.1, depending on whether Ci+1 is
an assignment, an if-statement or a while-statement. Note that this notation
for proofs makes the proof rule for composition in Figure 4.1 implicit.

How should the intermediate formulas φi be found? In principle, it seems
as though one could start from φ0 and, using C1, obtain φ1 and continue
working downwards. However, because the assignment rule works backwards,
it turns out that it is more convenient to start with φn and work upwards,
using Cn to obtain φn−1 etc.

Definition 4.12 The process of obtaining φi from Ci+1 and φi+1 is called
computing the weakest precondition of Ci+1, given the postcondition φi+1.
That is to say, we are looking for the logically weakest formula whose truth
at the beginning of the execution of Ci+1 is enough to guarantee φi+1

4.

The construction of a proof tableau for
(
φ
)
C1; . . . ;Cn

(
ψ
)

typically con-
sists of starting with the postcondition ψ and pushing it upwards through
Cn, then Cn−1, . . . , until a formula φ′ emerges at the top. Ideally, the formula
φ′ represents the weakest precondition which guarantees that the ψ will hold
if the composed program C1;C2; . . . ;Cn−1;Cn is executed and terminates.
The weakest precondition φ′ is then checked to see whether it follows from
the given precondition φ. Thus, we appeal to the Implied rule of Figure 4.1.

Before a discussion of how to find invariants for while-statement, we now
look at the assignment and the if-statement to see how the weakest precon-
dition is calculated for each one.

Assignment. The assignment axiom is easily adapted to work for proof
tableaux. We write it thus:

4 φ is weaker than ψ means that φ is implied by ψ in predicate logic enlarged with the basic
facts about arithmetic: the sequent �AR ψ → φ is valid. We want the weakest formula, because
we want to impose as few constraints as possible on the preceding code. In some cases, espe-
cially those involving while-statements, it might not be possible to extract the logically weakest
formula. We just need one which is sufficiently weak to allow us to complete the proof at hand.

4.3 Proof calculus for partial correctness 277(
ψ[E/x]

)
x = E(

ψ
)

Assignment

The justification is written against the ψ, since, once the proof has been con-
structed, we want to read it in a forwards direction. The construction itself
proceeds in a backwards direction, because that is the way the assignment
axiom facilitates.

Implied. In tableau form, the Implied rule allows us to write one formula φ2

directly underneath another one φ1 with no code in between, provided that
φ1 implies φ2 in that the sequent �AR φ1 → φ2 is valid. Thus, the Implied

rule acts as an interface between predicate logic with arithmetic and program
logic. This is a surprising and crucial insight. Our proof calculus for partial
correctness is a hybrid system which interfaces with another proof calculus
via the Implied proof rule only.

When we appeal to the Implied rule, we will usually not explicitly write
out the proof of the implication in predicate logic, for this chapter focuses
on the program logic. Mostly, the implications we typically encounter will
be easy to verify.

The Implied rule is often used to simplify formulas that are generated by
applications of the other rules. It is also used when the weakest precondition
φ′ emerges by pushing the postcondition upwards through the whole pro-
gram. We use the Implied rule to show that the given precondition implies
the weakest precondition. Let’s look at some examples of this.

Examples 4.13

1. We show that �par

(
y = 5

)
x = y + 1

(
x = 6

)
is valid:

(
y = 5

)
(
y + 1 = 6

)
Implied

x = y + 1(
x = 6

)
Assignment

The proof is constructed from the bottom upwards. We start with
(
x = 6

)
and, using the assignment axiom, we push it upwards through x = y + 1. This
means substituting y + 1 for all occurrences of x, resulting in

(
y + 1 = 6

)
. Now,

we compare this with the given precondition
(
y = 5

)
. The given precondition

and the arithmetic fact 5 + 1 = 6 imply it, so we have finished the proof.

278 4 Program verification

Although the proof is constructed bottom-up, its justifications make sense
when read top-down: the second line is implied by the first and the fourth
follows from the second by the intervening assignment.

2. We prove the validity of �par

(
y < 3

)
y = y + 1

(
y < 4

)
:

(
y < 3

)
(
y + 1 < 4

)
Implied

y = y + 1;(
y < 4

)
Assignment

Notice that Implied always refers to the immediately preceding line. As already
remarked, proofs in program logic generally combine two logical levels: the first
level is directly concerned with proof rules for programming constructs such as
the assignment statement; the second level is ordinary entailment familiar to
us from Chapters 1 and 2 plus facts from arithmetic – here that y < 3 implies
y + 1 < 3 + 1 = 4.

We may use ordinary logical and arithmetic implications to change a certain
condition φ to any condition φ′ which is implied by φ for reasons which have
nothing to do with the given code. In the example above, φ was y < 3 and the
implied formula φ′ was then y + 1 < 4. The validity of �AR (y < 3) → (y + 1 <
4) is rooted in general facts about integers and the relation < defined on them.
Completely formal proofs would require separate proofs attached to all instances
of the rule Implied. As already said, we won’t do that here as this chapter focuses
on aspects of proofs which deal directly with code.

3. For the sequential composition of assignment statements

z = x;

z = z + y;

u = z;

our goal is to show that u stores the sum of x and y after this sequence of
assignments terminates. Let us write P for the code above. Thus, we mean to
prove �par

(�)P (u = x+ y
)
.

We construct the proof by starting with the postcondition u = x+ y and
pushing it up through the assignments, in reverse order, using the assignment
rule.
– Pushing it up through u = z involves replacing all occurrences of u by z,

resulting in z = x+ y. We thus have the proof fragment(
z = x+ y

)
u = z;(

u = x+ y
)

Assignment

– Pushing z = x+ y upwards through z = z + y involves replacing z by z + y,
resulting in z + y = x+ y.

4.3 Proof calculus for partial correctness 279

– Pushing that upwards through z = x involves replacing z by x, resulting in
x+ y = x+ y. The proof fragment now looks like this:(

x+ y = x+ y
)

z = x;(
z + y = x+ y

)
Assignment

z = z + y;(
z = x+ y

)
Assignment

u = z;(
u = x+ y

)
Assignment

The weakest precondition that thus emerges is x+ y = x+ y; we have to check
that this follows from the given precondition �. This means checking that any
state that satisfies � also satisfies x+ y = x+ y. Well, � is satisfied in all states,
but so is x+ y = x+ y, so the sequent �AR � → (x+ y = x+ y) is valid.
The final completed proof therefore looks like this:

(�)(
x+ y = x+ y

)
Implied

z = x;(
z + y = x+ y

)
Assignment

z = z + y;(
z = x+ y

)
Assignment

u = z;(
u = x+ y

)
Assignment

and we can now read it from the top down.

The application of the axiom Assignment requires some care. We describe
two pitfalls which the unwary may fall into, if the rule is not applied correctly.

� Consider the example ‘proof’

(
x+ 1 = x+ 1

)
x = x + 1;(

x = x+ 1
)

Assignment

which uses the rule for assignment incorrectly. Pattern matching with the assign-
ment axiom means that ψ has to be x = x+ 1, the expression E is x+ 1 and
ψ[E/x] is x+ 1 = x+ 1. However, ψ[E/x] is obtained by replacing all occur-
rences of x in ψ by E, thus, ψ[E/x] would have to be equal to x+ 1 = x+ 1 + 1.
Therefore, the corrected proof

280 4 Program verification

(
x+ 1 = x+ 1 + 1

)
x = x + 1;(

x = x+ 1
)

Assignment

shows that �par

(
x+ 1 = x+ 1 + 1

)
x = x + 1

(
x = x+ 1

)
is valid.

As an aside, this corrected proof is not very useful. The triple says that, if
x+ 1 = (x+ 1) + 1 holds in a state and the assignment x = x + 1 is executed
and terminates, then the resulting state satisfies x = x+ 1; but, since the precon-
dition x+ 1 = x+ 1 + 1 can never be true, this triple tells us nothing informative
about the assignment.

� Another way of using the proof rule for assignment incorrectly is by allowing ad-
ditional assignments to happen in between ψ[E/x] and x = E, as in the ‘proof’(

x+ 2 = y + 1
)

y = y + 1000001;

x = x + 2;(
x = y + 1

)
Assignment

This is not a correct application of the assignment rule, since an additional
assignment happens in line 2 right before the actual assignment to which the
inference in line 4 applies. This additional assignment makes this reasoning un-
sound: line 2 overwrites the current value in y to which the equation in line 1
is referring. Clearly, x+ 2 = y + 1 won’t be true any longer. Therefore, we are
allowed to use the proof rule for assignment only if there is no additional code
between the precondition ψ[E/x] and the assignment x = E.

If-statements. We now consider how to push a postcondition upwards
through an if-statement. Suppose we are given a condition ψ and a pro-
gram fragment if (B) {C1} else {C2}. We wish to calculate the weakest
φ such that (

φ
)
if (B) {C1} else {C2}

(
ψ
)
.

This φ may be calculated as follows.

1. Push ψ upwards through C1; let’s call the result φ1. (Note that, since C1 may
be a sequence of other commands, this will involve appealing to other rules. If
C1 contains another if-statement, then this step will involve a ‘recursive call’
to the rule for if-statements.)

2. Similarly, push ψ upwards through C2; call the result φ2.
3. Set φ to be (B → φ1) ∧ (¬B → φ2).

Example 4.14 Let us see this proof rule at work on the non-optimal code
for Succ given earlier in the chapter. Here is the code again:

4.3 Proof calculus for partial correctness 281

a = x + 1;
if (a - 1 == 0) {
y = 1;

} else {
y = a;

}

We want to show that �par

(�) Succ (y= x+1
)

is valid. Note that this
program is the sequential composition of an assignment and an if-statement.
Thus, we need to obtain a suitable midcondition to put between the if-
statement and the assignment.

We push the postcondition y = x+ 1 upwards through the two branches
of the if-statement, obtaining

� φ1 is 1 = x+ 1;
� φ2 is a = x+ 1;

and obtain the midcondition (a− 1 = 0 → 1 = x+ 1) ∧ (¬(a− 1 = 0) →
a = x+ 1) by appealing to a slightly different version of the rule
If-statement: (

φ1

)
C1

(
ψ
) (

φ2

)
C2

(
ψ
)(

(B → φ1) ∧ (¬B → φ2)
)
if B {C1} else {C2}

(
ψ
) If-Statement (4.7)

However, this rule can be derived using the proof rules discussed so far; see
exercise 9(c) on page 301. The partial proof now looks like this:

(�)
(?) ?

a = x + 1;

((a− 1 = 0 → 1 = x+ 1) ∧ (¬(a− 1 = 0) → a = x+ 1)) ?

if (a - 1 == 0) {
(1 = x+ 1) If-Statement

y = 1;

(y = x+ 1) Assignment

} else {
(a = x+ 1) If-Statement

y = a;

(y = x+ 1) Assignment

}
(y = x+ 1) If-Statement

Continuing this example, we push the long formula above the if-statement
through the assignment, to obtain

(x+ 1 − 1 = 0 → 1 = x+ 1) ∧ (¬(x+ 1 − 1 = 0) → x+ 1 = x+ 1) (4.8)

282 4 Program verification

We need to show that this is implied by the given precondition �, i.e. that
it is true in any state. Indeed, simplifying (4.8) gives

(x = 0 → 1 = x+ 1) ∧ (¬(x = 0) → x+ 1 = x+ 1)

and both these conjuncts, and therefore their conjunction, are clearly valid
implications. The above proof now is completed as:

(�)(
(x + 1 − 1 = 0 → 1 = x + 1) ∧ (¬(x + 1 − 1 = 0) → x + 1 = x + 1)

)
Implied

a = x + 1;(
(a − 1 = 0 → 1 = x + 1) ∧ (¬(a − 1 = 0) → a = x + 1)

)
Assignment

if (a - 1 == 0) {(
1 = x + 1

)
If-Statement

y = 1;(
y = x + 1

)
Assignment

} else {(
a = x + 1

)
If-Statement

y = a;(
y = x + 1

)
Assignment

} (
y = x + 1

)
If-Statement

While-statements. Recall that the proof rule for partial correctness of
while-statements was presented in the following form in Figure 4.1 – here
we have written η instead of ψ:(

η ∧B)C (η)(
η
)
while B {C} (η ∧ ¬B) Partial-while. (4.9)

Before we look at how Partial-while will be represented in proof tableaux,
let us look in more detail at the ideas behind this proof rule. The formula η is
chosen to be an invariant of the body C of the while-statement: provided the
boolean guard B is true, if η is true before we start C, and C terminates,
then it is also true at the end. This is what the premise

(
η ∧B)C (η)

expresses.
Now suppose the while-statement executes a terminating run from a state

that satisfies η; and that the premise of (4.9) holds.

� If B is false as soon as we embark on the while-statement, then we do not execute
C at all. Nothing has happened to change the truth value of η, so we end the
while-statement with η ∧ ¬B.

4.3 Proof calculus for partial correctness 283

� If B is true when we embark on the while-statement, we execute C. By the
premise of the rule in (4.9), we know η is true at the end of C.
– if B is now false, we stop with η ∧ ¬B.
– if B is true, we execute C again; η is again re-established. No matter how

many times we execute C in this way, η is re-established at the end of each
execution of C. The while-statement terminates if, and only if, B is false after
some finite (zero including) number of executions of C, in which case we have
η ∧ ¬B.

This argument shows that Partial-while is sound with respect to the sat-
isfaction relation for partial correctness, in the sense that anything we prove
using it is indeed true. However, as it stands it allows us to prove only things
of the form

(
η
)
while (B) {C} (η ∧ ¬B), i.e. triples in which the postcon-

dition is the same as the precondition conjoined with ¬B. Suppose that we
are required to prove (

φ
)
while (B) {C} (ψ) (4.10)

for some φ and ψ which are not related in that way. How can we use
Partial-while in a situation like this?

The answer is that we must discover a suitable η, such that

1. �AR φ→ η,
2. �AR η ∧ ¬B → ψ and
3. �par

(
η
)
while (B) {C} (η ∧ ¬B)

are all valid, where the latter is shown by means of Partial-while. Then,
Implied infers that (4.10) is a valid partial-correctness triple.

The crucial thing, then, is the discovery of a suitable invariant η. It is a
necessary step in order to use the proof rule Partial-while and in general it
requires intelligence and ingenuity. This contrasts markedly with the case of
the proof rules for if-statements and assignments, which are purely mechan-
ical in nature: their usage is just a matter of symbol-pushing and does not
require any deeper insight.

Discovery of a suitable invariant requires careful thought about what the
while-statement is really doing. Indeed the eminent computer scientist, the
late E. Dijkstra, said that to understand a while-statement is tantamount
to knowing what its invariant is with respect to given preconditions and
postconditions for that while-statement.

This is because a suitable invariant can be interpreted as saying that the
intended computation performed by the while-statement is correct up to
the current step of the execution. It then follows that, when the execution

284 4 Program verification

terminates, the entire computation is correct. Let us formalize invariants
and then study how to discover them.

Definition 4.15 An invariant of the while-statement while (B) {C} is a
formula η such that �par

(
η ∧B)C (η) holds; i.e. for all states l, if η and B

are true in l and C is executed from state l and terminates, then η is again
true in the resulting state.

Note that η does not have to be true continuously during the execution of
C; in general, it will not be. All we require is that, if it is true before C is
executed, then it is true (if and) when C terminates.

For any given while-statement there are several invariants. For example,
� is an invariant for any while-statement; so is ⊥, since the premise of the
implication ‘if ⊥ ∧B is true, then . . . ’ is false, so that implication is true.
The formula ¬B is also an invariant of while (B) do {C}; but most of
these invariants are useless to us, because we are looking for an invariant
η for which the sequents �AR φ→ η and �AR η ∧ ¬B → ψ, are valid, where
φ and ψ are the preconditions and postconditions of the while-statement.
Usually, this will single out just one of all the possible invariants – up to
logical equivalence.

A useful invariant expresses a relationship between the variables manip-
ulated by the body of the while-statement which is preserved by the exe-
cution of the body, even though the values of the variables themselves may
change. The invariant can often be found by constructing a trace of the
while-statement in action.

Example 4.16 Consider the program Fac1 from page 262, annotated with
location labels for our discussion:

y = 1;
z = 0;

l1: while (z != x) {
z = z + 1;
y = y * z;

l2: }
Suppose program execution begins in a store in which x equals 6. When the
program flow first encounters the while-statement at location l1, z equals
0 and y equals 1, so the condition z �= x is true and the body is executed.
Thereafter at location l2, z equals 1 and y equals 1 and the boolean guard
is still true, so the body is executed again. Continuing in this way, we obtain

	Cover
	Half-title
	Title
	Copyright
	Contents
	Foreword to the first edition
	Preface to the second edition
	Our motivation for (re)writing this book
	What’s new and what’s gone
	The interdependence of chapters and prerequisites

	Acknowledgements
	Added for second edition

	1 Propositional logic
	1.1 Declarative sentences
	1.2 Natural deduction
	1.2.1 Rules for natural deduction
	1.2.2 Derived rules
	1.2.3 Natural deduction in summary
	1.2.4 Provable equivalence
	1.2.5 An aside: proof by contradiction

	1.3 Propositional logic as a formal language
	1.4 Semantics of propositional logic
	1.4.1 The meaning of logical connectives
	1.4.2 Mathematical induction
	1.4.3 Soundness of propositional logic
	1.4.4 Completeness of propositional logic

	1.5 Normal forms
	1.5.1 Semantic equivalence, satisfiability and validity
	1.5.2 Conjunctive normal forms and validity
	1.5.3 Horn clauses and satisfiability

	1.6 SAT solvers
	1.6.1 A linear solver
	1.6.2 A cubic solver

	1.7 Exercises
	1.8 Bibliographic notes

	2 Predicate logic
	2.1 The need for a richer language
	2.2 Predicate logic as a formal language
	2.2.1 Terms
	2.2.2 Formulas
	2.2.3 Free and bound variables
	2.2.4 Substitution

	2.3 Proof theory of predicate logic
	2.3.1 Natural deduction rules
	2.3.2 Quantifier equivalences

	2.4 Semantics of predicate logic
	2.4.1 Models
	2.4.2 Semantic entailment
	2.4.3 The semantics of equality

	2.5 Undecidability of predicate logic
	2.6 Expressiveness of predicate logic
	2.6.1 Existential second-order logic
	2.6.2 Universal second-order logic

	2.7 Micromodels of software
	2.7.1 State machines
	2.7.2 Alma – re-visited
	2.7.3 A software micromodel

	2.8 Exercises
	2.9 Bibliographic notes

	3 Verification by model checking
	3.1 Motivation for verification
	3.2 Linear-time temporal logic
	3.2.1 Syntax of LTL
	3.2.2 Semantics of LTL
	3.2.3 Practical patterns of specifications
	3.2.4 Important equivalences between LTL formulas
	3.2.5 Adequate sets of connectives for LTL

	3.3 Model checking: systems, tools, properties
	3.3.1 Example: mutual exclusion
	3.3.2 The NuSMV model checker
	3.3.3 Running NuSMV
	3.3.4 Mutual exclusion revisited
	3.3.5 The ferryman
	3.3.6 The alternating bit protocol

	3.4 Branching-time logic
	3.4.1 Syntax of CTL
	3.4.2 Semantics of computation tree logic
	3.4.3 Practical patterns of specifications
	3.4.4 Important equivalences between CTL formulas
	3.4.5 Adequate sets of CTL connectives

	3.5 CTL and the expressive powers of LTL and CTL
	3.5.1 Boolean combinations of temporal formulas in CTL
	3.5.2 Past operators in LTL

	3.6 Model-checking algorithms
	3.6.1 The CTL model-checking algorithm
	3.6.2 CTL model checking with fairness
	3.6.3 The LTL model-checking algorithm

	3.7 The fixed-point characterisation of CTL
	3.7.1 Monotone functions
	3.7.2 The correctness of SATEG
	3.7.3 The correctness of SATEU

	3.8 Exercises
	3.9 Bibliographic notes

	4 Program verification
	4.1 Why should we specify and verify code?
	4.2 A framework for software verification
	4.2.1 A core programming language
	4.2.2 Hoare triples
	4.2.3 Partial and total correctness
	4.2.4 Program variables and logical variables

	4.3 Proof calculus for partial correctness
	4.3.1 Proof rules
	4.3.2 Proof tableaux
	4.3.3 A case study: minimal-sum section

	4.4 Proof calculus for total correctness
	4.5 Programming by contract
	4.6 Exercises
	4.7 Bibliographic notes

	5 Modal logics and agents
	5.1 Modes of truth
	5.2 Basic modal logic
	5.2.1 Syntax
	5.2.2 Semantics
	Equivalences between modal formulas
	Valid formulas

	5.3 Logic engineering
	5.3.1 The stock of valid formulas
	5.3.2 Important properties of the accessibility relation
	5.3.3 Correspondence theory
	5.3.4 Some modal logics

	5.4 Natural deduction
	5.5 Reasoning about knowledge in a multi-agent system
	5.5.1 Some examples
	5.5.2 The modal logic KT45n
	5.5.3 Natural deduction for KT45n
	5.5.4 Formalising the examples

	5.6 Exercises
	5.7 Bibliographic notes

	6 Binary decision diagrams
	6.1 Representing boolean functions
	6.1.1 Propositional formulas and truth tables
	6.1.2 Binary decision diagrams
	6.1.3 Ordered BDDs

	6.2 Algorithms for reduced OBDDs
	6.2.1 The algorithm reduce
	6.2.2 The algorithm apply
	6.2.3 The algorithm restrict
	6.2.4 The algorithm exists
	6.2.5 Assessment of OBDDs

	6.3 Symbolic model checking
	6.3.1 Representing subsets of the set of states
	6.3.2 Representing the transition relation
	6.3.3 Implementing the functions…
	6.3.4 Synthesising OBDDs

	6.4 A relational mu-calculus
	6.4.1 Syntax and semantics

	6.5 Exercises
	6.6 Bibliographic notes

	Bibliography
	Index

